\[\boxed{\text{727\ (727).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\(1){\ (a - 1)}^{3} - 9 \cdot (a - 1) =\)
\[= (a - 1)(a - 4)(a + 2)\]
\[(a - 1)^{3} - 9 \cdot (a - 1) =\]
\[= (a - 1)\left( (a - 1)^{2} - 9 \right) =\]
\[= (a - 1)(a - 1 - 3)(a - 1 + 3) =\]
\[= (a - 1)(a - 4)(a + 2)\]
\[(a - 1)(a - 4)(a + 2) =\]
\[= (a - 1)(a - 4)(a + 2) \Longrightarrow\]
\[\Longrightarrow тождество.\]
\[2)\ \left( x^{2} + 1 \right)^{2} - 4x^{2} =\]
\[= (x - 1)²(x + 1)²\]
\[\left( x^{2} + 1 \right)^{2} - 4x^{2} =\]
\[= \left( x^{2} + 1 - 2x \right)\left( x^{2} + 1 + 2x \right) =\]
\[= (x - 1)^{2}(x + 1)^{2}\]
\[(x - 1)^{2}(x + 1)^{2} =\]
\[= (x - 1)^{2}(x + 1)^{2} \Longrightarrow\]
\[\Longrightarrow тождество.\]
\[\boxed{\text{727.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Формула\ квадрата\ трехчлена:\]
\[(a + b + c)^{2} =\]
\[= a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ac.\]
\[Выведем:\]
\[(a + b + c)^{2} =\]
\[= \left( (a + b) + c \right)^{2} =\]
\[= (a + b)^{2} + 2 \cdot (a + b) \cdot c + c^{2} =\]
\[1)\ (a + b - c)^{2} =\]
\[2)\ (a - b + 4)^{2} =\]
\[= a^{2} + b^{2} + 16\ - 2ab - 8b + 8a.\]