\[\boxed{\text{722\ (722).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ m² - n^{2} - m + n =\]
\[= (m - n)(m + n) - (m - n) =\]
\[= (m - n)(m + n - 1)\]
\[2)\ c + d - c^{2} + d^{2} =\]
\[= (c + d) - (c - d)(c + d) =\]
\[= (c + d)(1 - c + d)\]
\[3)\ 16x² - 25y^{2} - 4x - 5y =\]
\[= (4x - 5y)(4x + 5y) - (4x + 5y) =\]
\[= (4x + 5y)(4x - 5y - 1)\]
\[4)\ 12a²b³ + 3a³b² + 16b² - a^{2} =\]
\[= (4b + a)(3a^{2}b^{2} + 4b - a)\]
\[5)\ 49c² - 14c + 1 - 21ac + 3a =\]
\[= (7c - 1)^{2} - 3a(7c - 1) =\]
\[= (7c - 1)(7c - 1 - 3a)\]
\[6)\ ax² + ay² + x^{4} + 2x²y² + y^{4} =\]
\[= a\left( x^{2} + y^{2} \right) + \left( x^{2} + y^{2} \right)^{2} =\]
\[= \left( x^{2} + y^{2} \right)\left( a + x^{2} + y^{2} \right)\]
\[7)\ 27c³ - d^{3} + 9c^{2} + 3cd + d^{2} =\]
\[= \ \left( 9c^{2} + 3cd + d^{2} \right)(3c - d + 1)\]
\[8)\ b³ - 2b^{2} - 2b + 1 =\]
\[= \left( b^{3} + 1 \right) - 2b(b + 1) =\]
\[= (b + 1)\left( b^{2} - b + 1 \right) - 2b(b + 1) =\]
\[= (b + 1)\left( b^{2} - b + 1 - 2b \right) =\]
\[= (b + 1)(b^{2} - 3b + 1)\]