\[\boxed{\text{658\ (658).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ x² + 4y² + 2x - 4y + 2 = 0\]
\[\left( x^{2} + 2x + 1 \right) + \left( 4y^{2} - 4y + 1 \right) =\]
\[= 0\]
\[(x + 1)^{2} + (2y - 1)^{2} = 0\]
\[x = - 1,\ \ y = \frac{1}{2}\]
\[Ответ:при\ x = - 1,\ y = \frac{1}{2}.\]
\[2)\ 9x² + y² - 12x + 8y + 21 =\]
\[= 0\]
\[(3x - 2)^{2} + (y + 4)^{2} \neq - 1\]
\[(3x - 2)^{2} \geq 0,\ \ (y + 4)^{2} \geq 0\]
\[Ответ:таких\ значений\ нет.\]
\[\boxed{\text{658.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ 86^{2} - 76^{2} =\]
\[= (86 - 76)(86 + 76) =\]
\[= 10 \cdot 162 = 1620\]
\[2)\ 107^{2} - 93^{2} =\]
\[= (107 - 93)(107 + 93) =\]
\[= 6 \cdot 200 = 1200\]
\[3)\ {7,32}^{2} - {6,32}^{2} =\]
\[= (7,32 - 6,32)(7,32 + 6,32) =\]
\[= 1 \cdot 13,64 = 13,64\]
\[4)\ {19,4}^{2} - {19,3}^{2} =\]
\[= (19,4 - 19,3)(19,4 + 19,3) =\]
\[= 0,1 \cdot 38,7 = 3,87.\]
\[5)\ {8,54}^{2} - {1,46}^{2} =\]
\[= (8,54 - 1,46)(8,54 + 1,46) =\]
\[= 7,08 \cdot 10 = 70,8\]
\[6)\ \left( 3\frac{2}{3} \right)^{2} - \left( 2\frac{1}{3} \right)^{2} =\]
\[= \left( \frac{11}{3} - \frac{7}{3} \right)\left( \frac{11}{3} + \frac{7}{3} \right) = \frac{4}{3} \cdot \frac{18}{3} =\]
\[= \frac{4}{3} \cdot 6 = 4 \cdot 2 = 8\]