\[\boxed{\text{562\ (562).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \frac{2x - 1}{8} - \frac{x + 2}{4} = x\ \ \ \ \ | \cdot 8\]
\[2x - 1 - 2 \cdot (x + 2) = 8 \cdot x\]
\[2x - 1 - 2x - 4 = 8x\]
\[- 5 = 8x\]
\[x = - \frac{5}{8}\]
\[Ответ:\ x = - \frac{5}{8}.\]
\[2)\ 3 \cdot (2x + 3) - 2 \cdot (3x + 5) =\]
\[= - 1\]
\[6x + 9 - 6x - 10 = - 1\]
\[0 \cdot x = 0\]
\[Ответ:бесконечно\ много\ \]
\[корней.\]
\[\boxed{\text{562.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ (4x - 4y)^{2} = \left( 4 \cdot (x - y) \right)^{2} =\]
\[= 4^{2} \cdot (x - y)^{2} = 16 \cdot (x - y)^{2}.\]
\[2)\ (18a + 27b)^{2} =\]
\[= (9 \cdot 2a + 9 \cdot 3b)^{2} =\]
\[= \left( 9 \cdot (2a + 3b) \right)^{2} =\]
\[= 9^{2} \cdot (2a + 3b)^{2} =\]
\[= 81 \cdot (2a + 3b)^{2}.\]
\[3)\ (8m - 10n)^{3} =\]
\[= (2 \cdot 4m - 2 \cdot 5n)^{3} =\]
\[= \left( 2 \cdot (4m - 5n) \right)^{3} =\]
\[= 2^{3} \cdot (4m - 5n)^{3} =\]
\[= 8 \cdot (4m - 5n)^{3}.\]
\[4)\ \left( a^{2} - 9a \right)^{2} = \left( a \cdot (a - 9) \right)^{2} =\]
\[= a^{2} \cdot (a - 9)^{2}.\]
\[5)\ \left( 16x^{2}y + 40xy^{2} \right)^{2} =\]
\[= \left( 8xy \cdot (2x + 5y) \right)^{2} =\]
\[= (8xy)^{2} \cdot (4x + 10y)^{2} =\]
\[= 64x^{2}y^{2} \cdot (2x + 5y)^{2}.\]
\[6)\ \left( 22x^{4} - 28x^{2}y^{3} \right)^{5} =\]
\[= \left( 2x^{2} \cdot 11x^{2} - 2x^{2} \cdot 14y^{3} \right)^{5} =\]
\[= (2x^{2} \cdot {\left( 11x^{2} - 14y^{3} \right))}^{5}\ =\]
\[= \left( 2x^{2} \right)^{5} \cdot \left( 11x^{2} - 14y^{3} \right)^{5} =\]
\[= 32x^{10} \cdot \left( 11x^{2} - 14y^{3} \right)^{5}\text{.\ }\]