\[\boxed{\text{548\ (548).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ (3x - 5)^{2} - 49 = 0\]
\[(3x - 5)^{2} - 7^{2} = 0\]
\[(3x - 5 - 7)(3x - 5 + 7) = 0\]
\[(3x - 12)(3x + 2) = 0\]
\[3x - 12 = 0;\ \ \ \ \ \ 3x + 2 = 0\]
\[3x = 12\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 3x = - 2\]
\[x = 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - \frac{2}{3}\]
\[Ответ:x = - \frac{2}{3};4.\]
\[2)\ (4x + 7)^{2} - 9x^{2} = 0\]
\[(4x + 7 - 3x)(4x + 7 + 3x) = 0\]
\[(x + 7)(7x + 7) = 0\]
\[x + 7 = 0,\ \ 7x + 7 = 0\]
\[x = - 7\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - 1\]
\[Ответ:\ x = - 7;\ - 1.\]
\[3)\ (a - 1)^{2} - (2a + 9)^{2} = 0\]
\[( - a - 10)(3a + 8) = 0\]
\[- a - 10 = 0,\ \ 3a + 8 = 0\]
\[Ответ:\ x = - 10;\ - 2\frac{2}{3}.\]
\[(7b + 9)(23b + 1) = 0\]
\[Ответ:\ x = - 1\frac{2}{7};\ - \frac{1}{23}.\]