\[\boxed{\text{442\ (442).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ c \cdot (x - 3) - d \cdot (x - 3) =\]
\[= (x - 3) \cdot (c - d).\]
\[2)\ m \cdot (p - k) - (p - k) =\]
\[= (p - k) \cdot (m - 1).\]
\[3)\ m \cdot (x - y) - n \cdot (y - x) =\]
\[= (x - y) \cdot (m + n).\]
\[4)\ x \cdot (2 - x) + 4 \cdot (x - 2) =\]
\[= (2 - x) \cdot (x - 4).\]
\[5)\ 4x \cdot (2x - y) - 5y \cdot (y - 2x) =\]
\[= (2x - y) \cdot (4x + 5y).\]
\[6)\ (y + 1)^{2} - 4y \cdot (y + 1) =\]
\[= (y + 1) \cdot (y + 1 - 4y) =\]
\[= (y + 1) \cdot ( - 3y + 1).\]
\[7)\ 10 \cdot \left( a^{2} - 5 \right) + \left( a^{2} - 5 \right)^{2} =\]
\[= \left( a^{2} - 5 \right) \cdot \left( 10 + a^{2} - 5 \right) =\]
\[= \left( a^{2} - 5 \right) \cdot \left( a^{2} + 5 \right).\]
\[8)\ (a - 2)^{2} - 6 \cdot (a - 2) =\]
\[= (a - 2) \cdot (a - 2 - 6) =\]
\[= (a - 2) \cdot (a - 8)\text{.\ }\]