\[\boxed{\text{417\ (417).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ (x + 3) \cdot (* + \ 5) =\]
\[= 3x^{2} + \ * + \ *\]
\[(x + 3) \cdot \left( *_{1} + \ 5 \right) =\]
\[= 3x^{2} + \ *_{2} + \ *_{3}\]
\[x \cdot *_{1} + x \cdot 5 + 3 \cdot *_{1} + 3 \cdot 5 =\]
\[= 3x^{2} + \ * + \ *\]
\[x \cdot *_{1} + 5x + 3 \cdot *_{1} + 15 =\]
\[= 3x^{2} + *_{2} + *_{3}\]
\[x \cdot *_{1} = 3x^{2}\]
\[*_{1} = 3x.\]
\[5x + 3 \cdot *_{1} = 5x + 3 \cdot 3x =\]
\[= 5x + 9x = 14x = *_{2}\]
\[(x + 3)(3x + 5) =\]
\[= 3x^{2} + 14x + 15;\ \ *_{3} = 15.\]
\[*_{1} = 3x;\ \ \ *_{2} = 14x;\ \ \ *_{3} = 15.\]
\[2)\ (x - 4) \cdot (x + \ *) =\]
\[= \ *\ + \ *\ + 24\]
\[(x - 4) \cdot \left( x + \ *_{1} \right) =\]
\[= \ *_{2}\ + \ *_{3}\ + 24\]
\[x \cdot x + x \cdot *_{1} - 4 \cdot x - 4 \cdot *_{1} =\]
\[= *_{2}\ + \ *_{3}\ + 24\]
\[x^{2} + x \cdot *_{1} - 4x - 4 \cdot *_{1} =\]
\[= *_{2}\ + \ *_{3}\ + 24\]
\[- 4 \cdot *_{1} = 24\]
\[*_{1} = - 6.\]
\[x \cdot *_{1} - 4x = x \cdot ( - 6) - 4x =\]
\[= - 6x - 4x = - 10x = *_{3}.\]
\[x^{2} = *_{3}.\]
\[(x - 4)(x - 6) =\]
\[= x^{2} - 10x + 24\]
\[*_{1} = 6;\ \ \ *_{2} = x^{2};\ \ \ \ *_{3} = - 10x.\]
\[\boxed{\text{417.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \left( 5a^{3} - 20a^{2} \right) - \left( 4a^{3} - 18a^{2} \right) =\]
\[= 5a^{3} - 20a^{2} - 4a^{3} + 18a^{2} =\]
\[= a^{3} - 2a^{2}.\]
\[При\ a = - 3:\]
\[a^{3} - 2a^{2} = ( - 3)^{3} - 2 \cdot ( - 3)^{2} =\]
\[= - 27 - 2 \cdot 9 = - 27 - 18 =\]
\[= - 45\]
\[Ответ:\ - 45.\]
\[При\ b = - 1,5;\ \ c = 4:\]
\[- 4 \cdot ( - 1,5) \cdot 4 = 24.\]
\[Ответ:24.\ \]