\[\boxed{\text{359\ (359).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ 3x \cdot (2x - 5) - 8x \cdot (4x - 3) =\]
\[= 6x^{2} - 15x - 32x^{2} + 24x =\]
\[= - 26x^{2} + 9x\]
\[при\ x = - 1:\ \ \]
\[- 26 \cdot 1 - 9 = - 35.\]
\[при\ x = 7:\ \ \]
\[10 \cdot 49 + 20 \cdot 7 = 490 + 140 =\]
\[= 630.\]
\[= a^{3}b + 5ab^{3}\]
\[при\ a = - 3;\ \ \ b = 2:\ \ \ \ \]
\[( - {3)}^{3} \cdot 2 + 5 \cdot ( - 3) \cdot 2^{3} =\]
\[= - 27 \cdot 2 - 15 \cdot 8 =\]
\[= - 54 - 120 = - 174.\ \]
\[\boxed{\text{359.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \left( - 6m^{3}n^{3} \right)^{3} =\]
\[= ( - 6)^{3} \cdot \left( m^{3} \right)^{3} \cdot \left( n^{3} \right)^{3} =\]
\[= - 216m^{9}n^{9}\]
\[2)\ \left( - 7x^{9}y^{10} \right)^{2} =\]
\[= ( - 7)^{2} \cdot \left( x^{9} \right)^{2} \cdot \left( y^{10} \right)^{2} =\]
\[= 49x^{18}y^{20}\]
\[3)\ \left( - \frac{1}{2}x^{8}y^{9} \right)^{5} =\]
\[= \left( - \frac{1}{2} \right)^{5} \cdot \left( x^{8} \right)^{5} \cdot \left( y^{9} \right)^{5} =\]
\[= - \frac{1}{32}x^{40}y^{45}\]