\[\boxed{\text{302\ (302).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[- 9x + (4x - 7) =\]
\[= - 9x + 4x - 7 = - 5x - 7.\]
\[Ответ:3).\ \]
\[\boxed{\text{302.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ a^{4} \cdot a^{3} = a^{7}\]
\[a^{4} \cdot a^{3} \neq a^{12}.\]
\[2)\ a \cdot a = a^{2}\]
\[a \cdot a \neq 2a.\]
\[3)\ \left( a^{3} \right)^{2} = a^{6}\]
\[\left( a^{3} \right)^{2} \neq a^{9}.\]
\[4)\ 3^{2} \cdot 5^{2} = (3 \cdot 5)^{2} = 15^{2}\]
\[3^{2} \cdot 5^{2} \neq 15^{4}.\]
\[5)\ 2^{2} \cdot 7^{3} = 2^{2} \cdot 7^{2} \cdot 7 =\]
\[= (2 \cdot 7)^{2} \cdot 7 = 14^{2} \cdot 7\]
\[2^{2} \cdot 7^{3} \neq 14^{5}.\]
\[6)\ (2a)^{4} = 2^{4} \cdot a^{4} = 16a^{4}\]
\[\ (2a)^{4} \neq 8a^{4}.\]
\[7)\ 3 \cdot 4^{3} = 3 \cdot 4 \cdot 4^{2} = 12 \cdot 16\]
\[3 \cdot 4^{3} \neq 12^{3}.\]
\[8)\ a^{7} \cdot b^{7} = \left( \text{ab} \right)^{7}\]
\[a^{7} \cdot b^{7} \neq \left( \text{ab} \right)^{14}.\]
\[9)\ a^{3} \cdot b^{2} = a \cdot a^{2} \cdot b^{2} =\]
\[= \left( \text{ab} \right)^{2} \cdot a\]
\[a^{3} \cdot b^{2} \neq \left( \text{ab} \right)^{6}.\]