\[\boxed{\text{294\ (294).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ при\ y = 1:\]
\[2 \cdot 1^{3} - 3 \cdot 1^{2} + 4 \cdot 1 - 6 =\]
\[= 2 - 3 + 4 - 6 = - 3.\]
\[2)\ при\ y = 0:\]
\[2 \cdot 0 - 3 \cdot 0 + 4 \cdot 0 - 6 = - 6.\]
\[3)\ при\ y = - 5:\]
\[2y^{3} - 3y^{2} + 4y - 6 =\]
\[= y^{2}(2y - 3) + 2 \cdot (2y - 3) =\]
\[= (2y - 3)\left( y^{2} + 2 \right) =\]
\[= ( - 10 - 3)(25 + 2) =\]
\[= - 13 \cdot 27 = - 351.\]
\[\boxed{\text{294.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \left( m^{5} \right)^{3} = m^{5 \cdot 3} = m^{15}\]
\[2)\ \left( m^{3} \right)^{4} = m^{3 \cdot 4} = m^{12}\]
\[3)\ \left( \left( m^{2} \right)^{4} \right)^{6} = \left( m^{8} \right)^{6} = m^{8 \cdot 6} =\]
\[= m^{48}\]
\[4)\ \left( m^{7} \right)^{2} \cdot \left( m^{4} \right)^{9} = m^{14} \cdot m^{36} =\]
\[= m^{14 + 36} = m^{50\ }\]