\[\boxed{\text{272\ (}\text{н}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \left( - 6m^{3}n^{3} \right)^{3} =\]
\[= ( - 6)^{3} \cdot \left( m^{3} \right)^{3} \cdot \left( n^{3} \right)^{3} =\]
\[= - 216m^{9}n^{9}\]
\[2)\ \left( - 7x^{9}y^{10} \right)^{2} =\]
\[= ( - 7)^{2} \cdot \left( x^{9} \right)^{2} \cdot \left( y^{10} \right)^{2} =\]
\[= 49x^{18}y^{20}\]
\[3)\ \left( - \frac{1}{2}x^{8}y^{9} \right)^{5} =\]
\[= \left( - \frac{1}{2} \right)^{5} \cdot \left( x^{8} \right)^{5} \cdot \left( y^{9} \right)^{5} =\]
\[= - \frac{1}{32}x^{40}y^{45}\]
\[\boxed{\text{272\ (}\text{с}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \left( - 6m^{3}n^{3} \right)^{3} =\]
\[= ( - 6)^{3} \cdot \left( m^{3} \right)^{3} \cdot \left( n^{3} \right)^{3} =\]
\[= - 216m^{9}n^{9}\]
\[2)\ \left( - 7x^{9}y^{10} \right)^{2} =\]
\[= ( - 7)^{2} \cdot \left( x^{9} \right)^{2} \cdot \left( y^{10} \right)^{2} =\]
\[= 49x^{18}y^{20}\]
\[3)\ \left( 0,5a^{12}b^{14} \right)^{2} =\]
\[= (0,5)^{2} \cdot \left( a^{12} \right)^{2} \cdot \left( b^{14} \right)^{2} =\]
\[= 0,25a^{24}b^{28}\]
\[4)\ \left( 3ab^{4}c^{5} \right)^{4} =\]
\[= 3^{4} \cdot a^{4} \cdot \left( b^{4} \right)^{4} \cdot \left( c^{5} \right)^{4} =\]
\[= 81a^{4}b^{16}c^{20}\]
\[5)\ \left( - \frac{1}{2}x^{8}y^{9} \right)^{5} =\]
\[= \left( - \frac{1}{2} \right)^{5} \cdot \left( x^{8} \right)^{5} \cdot \left( y^{9} \right)^{5} =\]
\[= - \frac{1}{32}x^{40}y^{45}\]
\[6)\ \left( 2\frac{1}{7}a^{6}b^{8} \right)^{2} =\]
\[= \left( \frac{15}{7} \right)^{2} \cdot \left( a^{6} \right)^{2} \cdot \left( b^{8} \right)^{2} =\]
\[= \frac{225}{49}a^{12}b^{16} = 4\frac{29}{49}a^{12}b^{16}\]