\[\boxed{\text{202\ (202).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Представим\ степени\ в\ виде\ \]
\[произведения\ \ множителей,\ \]
\[найдем\ и\ сравним\ полученные\ \]
\[значения.\]
\[1)\ 2^{2} \cdot 2^{3} = 2^{5}\]
\[2^{2} \cdot 2^{3} = \ 4 \cdot 8 = 32\]
\[2^{5} = 32.\]
\[2)\ 4^{2} \cdot 4^{1} = 4^{3}\]
\[4^{2} \cdot 4^{1} = 16 \cdot 4 = 64\]
\[4^{3} = 64.\]
\[3)\ \left( 3^{3} \right)^{2} = 3^{6}\]
\[\left( 3^{3} \right)^{2} = (27)^{2} = 729\]
\[3^{6} = 9 \cdot 9 \cdot 9 = 81 \cdot 9 =\]
\[= 729.\]
\[4)\ \left( \left( \frac{1}{2} \right)^{4} \right)^{3} = \left( \frac{1}{2} \right)^{12}\]
\[\left( \left( \frac{1}{2} \right)^{4} \right)^{3} = \left( \frac{1}{16} \right)^{3} =\]
\[= \frac{1}{16 \cdot 16 \cdot 16} = \frac{1}{256 \cdot 16}\]
\[\left( \frac{1}{2} \right)^{12} = \frac{1}{4096}\]
\[2^{10} = 1024\]
\[2^{12} = 1024 \cdot 4 = 4096.\]
\[5)\ 5^{3} \cdot 2^{3} = (5 \cdot 2)^{3}\]
\[5^{3} \cdot 2^{3} = 125 \cdot 8 = 1000\]
\[(5 \cdot 2)^{3} = 10^{3} = 1000.\]
\[6)\ (0,25 \cdot 4)^{2} = {0,25}^{2} \cdot 4^{2}\]
\[(0,25 \cdot 4)^{2} = 1^{2} = 1\]
\[{0,25}^{2} \cdot 4^{2} = 0,0625 \cdot 16 = 1.\]
\[\boxed{\text{202.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[По\ признаку\ делимости\ на\ 6\ \]
\[числа\ должны\ оканчиваться\ \]
\[цифрами:0,\ 2,\ 4,\ 6,\ 8,\ а\ сумма\ \]
\[цифр\ этого\ числа\ должна\ \]
\[делиться\ на\ 3.\]
\[Методом\ подстановки:\]
\[2 + 3 + 7 + 2 = 14 - не\ \]
\[удовлетворяет;\]
\[4 + 3 + 7 + 4 = 18 -\]
\[удовлетворяет;\]
\[6 + 3 + 7 + 6 = 22 - не\ \]
\[удовлетворяет;\]
\[8 + 3 + 7 + 8 = 26 - не\ \]
\[удовлетворяет.\]
\[Ответ:4.\ \]