\[\boxed{\text{1141\ (1141).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ 5^{x} \cdot 5^{6} = 5^{24}\]
\[x + 6 = 24\]
\[x = 24 - 6\ \]
\[x = 18.\]
\[2)\ \left( 3^{m} \right)^{x} = 3^{5m}\ \]
\[mx = 5m\]
\[x = 5.\]
\[3)\ 2^{x} \cdot 2^{m} = 2^{6m}\]
\[x + m = 6m\]
\[x = 5m.\]
\[4)\ \left( 4^{x} \right)^{3m} = 4^{6m^{2}}\ \]
\[3xm = 6m^{2}\ \]
\[x = 2m.\ \]
\[\boxed{\text{1141.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ \text{x\ }задач\ по\ алгебре,\ \]
\[а\ \text{y\ }задач\ по\ геометрии.\]
\[Тогда\ 2x + 3y = 24;\ \]
\[подбираем\ решения\ \]
\[(x \geq ;\ y \geq 1).\]
\[y = 2:\ \ \]
\[2x + 6 = 24\ \ \]
\[2x = 18\ \ \]
\[x = 9 \Longrightarrow \ \ (9;2).\]
\[y = 4:\]
\[2x + 12 = 24\ \ \]
\[2x = 12\ \]
\[x = 6 \Longrightarrow \ \ (6;4).\]
\[y = 6:\ \ \]
\[2x + 18 = 24\ \ \]
\[2x = 6\ \ \]
\[x = 3 \Longrightarrow \ \ (3;6).\]
\[Ответ:9\ по\ алгебре,\]
\[\ 2\ по\ геометрии;6\ по\ алгебре,\ \]
\[4\ по\ геометрии;\]
\[3\ по\ алгебре,\ 6\ по\ геометрии\]