\[\boxed{\text{1067\ (1067).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ (x + y)^{2} + (x - 3)^{2} = 0\]
\[x + y = 0\ \ \ и\ \ \ x - 3 = 0\]
\[\left\{ \begin{matrix} x = - y \\ x = 3\ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} y = - 3 \\ x = 3\ \ \ \ \\ \end{matrix} \right.\ \]
\[Ответ:(3;\ - 3).\]
\[(x + 2y - 3)^{2} + (x - 2y)^{2} = 0\]
\[Ответ:(1,5;0,75).\]
\[Ответ:\left( 4;\ - \frac{2}{3} \right).\]
\[4)\ x^{2} + y^{2} + 10x - 12y + 61 =\]
\[= 0\]
\[(x + 5)^{2} + (y - 6)^{2} = 0\]
\[\left\{ \begin{matrix} x + 5 = 0 \\ y - 6 = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} x = - 5 \\ y = 6\ \\ \end{matrix} \right.\ \]
\[Ответ:( - 5;6).\]
\[(5x - 3y)^{2} + (y + 4)^{2} = 0\]
\[Ответ:( - 2,4;\ - 4)\text{.\ }\]
\[\boxed{\text{1067.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ А\ ( - 2;\ - 6,6):\]
\[1,8 \cdot ( - 2) - 3 = - 3,6 - 3 =\]
\[= - 6,6\ \Longrightarrow проходит.\]
\[2)\ В\ (1;1,2):\ \]
\[1,8 - 3 = - 1,2 \Longrightarrow не\ проходит;\]
\[3)\ С\ (0; - 3):\ \]
\[0 - 3 = - 3 \Longrightarrow проходит;\]
\[4)\ \text{D\ }(5;7):\ \ \]
\[1,8 \cdot 5 - 3 = 9 - 3 = 6 \Longrightarrow\]
\[\Longrightarrow не\ проходит.\]