\[\boxed{\text{708.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
Пояснение.
Решение.
\[\textbf{а)}\ (x - 3)(x + 7) - 13 =\]
\[= x^{2} + 7x - 3x - 21 - 13 =\]
\[= x^{2} + 4x - 34\]
\[(x + 8)(x - 4) - 2 =\]
\[= x^{2} - 4x + 8x - 32 - 2 =\]
\[= x^{2} + 4x - 34\]
\[x^{2} + 4x - 34 = x^{2} + 4x - 34\]
\[Следовательно:\]
\[(x - 3)(x + 7) - 13 =\]
\[= (x + 8)(x - 4) - 2\]
\[\textbf{б)}\ 16 - (a + 3)(a + 2) =\]
\[= 16 - \left( a^{2} + 2a + 3a + 6 \right) =\]
\[= 16 - a^{2} - 5a - 6 =\]
\[= - a^{2} - 5a + 10\]
\[4 - (6 + a)(a - 1) =\]
\[= 4 - \left( 6a - 6 + a^{2} - a \right) =\]
\[= 4 - 5a + 6 - a^{2}\]
\[= - a^{2} - 5a + 10\]
\[- a^{2} - 5a + 10 =\]
\[= - a^{2} - 5a + 10\]
\[Следовательно:\]
\[16 - (a + 3)(a + 2) =\]
\[= 4 - (6 + a)(a - 1).\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\text{708\ (708).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ x(b + c) + 3b + 3c =\]
\[= x(b + c) + 3 \cdot (b + c) =\]
\[= (b + c)(x + 3)\]
\[\textbf{б)}\ y(a - c) + 5a - 5c =\]
\[= y(a - c) + 5 \cdot (a - c) =\]
\[= (a - c)(y + 5)\]
\[\textbf{в)}\ p(c - d) + c - d =\]
\[= p \cdot (c - d) + 1 \cdot (c - d) =\]
\[= (p + 1)(c - d)\]
\[\textbf{г)}\ a(p - q) + q - p =\]
\[= a \cdot (p - q) + 1 \cdot (a - q) =\]
\[= a(p - q) - (p - q) =\]
\[= (p - q)(a - 1)\ \]