\[\boxed{\text{274.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
Пояснение.
Аргумент (x) – это независимая переменная.
Функция (y) – зависимая от x переменная.
Решение.
\[\mathbf{Выразим\ }\mathbf{\text{x\ }}\mathbf{через\ }\mathbf{y:}\]
\[x\] | \[- 0,5\] | \[- 3\] | \[0\] | \[4,5\] | \[9\] |
---|---|---|---|---|---|
\[y\] | \[- \frac{1}{3}\] | \[- 2\] | \[0\] | \[3\] | \[6\] |
\[x = - 0,5 \Longrightarrow y = \frac{2}{3} \cdot ( - 0,5) =\]
\[= - \frac{1}{3}.\]
\[x = 4,5 \Longrightarrow y = \frac{2}{3} \cdot 4,5 = \frac{9}{3} = 3.\]
\[x = 9 \Longrightarrow y = \frac{2}{3} \cdot 9 = 2 \cdot 3 = 6.\]
\[y = - 2 \Longrightarrow \ \ x = \frac{3}{2} \cdot ( - 2) = - 3.\]
\[y = 0 \Longrightarrow x = \frac{3}{2} \cdot 0 = 0.\]
\[\boxed{\text{274\ (274).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Выразим\ \text{x\ }через\ y:\]
\[x = y\ :\frac{2}{3}\]
\[x = y \cdot \frac{3}{2}\]
\[x = \frac{3}{2}\text{y.}\]
\[x\] | \[- 0,5\] | \[- 3\] | \[0\] | \[4,5\] | \[9\] |
---|---|---|---|---|---|
\[y\] | \[- \frac{1}{3}\] | \[- 2\] | \[0\] | \[3\] | \[6\] |
\[x = - 0,5 \Longrightarrow y = \frac{2}{3} \cdot ( - 0,5) =\]
\[= \frac{2}{3} \cdot \left( - \frac{1}{2} \right) = - \frac{1}{3}.\]
\[x = 4,5 \Longrightarrow y = \frac{2}{3} \cdot 4,5 = \frac{2}{3} \cdot \frac{45}{10} =\]
\[= \frac{2 \cdot 9}{3 \cdot 2} = \frac{9}{3} = 3.\]
\[x = 9 \Longrightarrow y = \frac{2}{3} \cdot 9 = 2 \cdot 3 = 6.\]
\[y = - 2 \Longrightarrow \ \ x = \frac{3}{2} \cdot ( - 2) =\]
\[= 3 \cdot ( - 1) = - 3.\]
\[y = 0 \Longrightarrow x = \frac{3}{2} \cdot 0 = 0.\]