Решебник по алгебре 7 класс Макарычев ФГОС Задание 1106

Авторы:
Год:2023
Тип:учебник

Задание 1106

Выбери издание
фгос Алгебра 7 класс Макарычев ФГОС, Теляковский, Миндюк Просвещение
 
Алгебра 7 класс Макарычев, Миндюк, Нешков Просвещение
Издание 1
фгос Алгебра 7 класс Макарычев ФГОС, Теляковский, Миндюк Просвещение

\[\boxed{\text{1106.}\text{\ }еуроки - ответы\ на\ пятёрку}\]

\[Используя\ точки\ (4;0)\ и\ \ \]

\[(0;11),\ составим\ систему\]

\[\ уравнений:\]

\[\left\{ \begin{matrix} 0 = 4k + b \\ 11 = 0k + b \\ \end{matrix} \right.\ \ \ \Longrightarrow \left\{ \begin{matrix} - 4k = b \\ b = 11\ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} b = 11\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ k = - \frac{11}{4} = - 2,75 \\ \end{matrix} \right.\ \]

\[тогда\ уравнение\ прямой\ имеет\ \]

\[вид:\ \ \ y = - 2,75x + 11.\]

Издание 2
Алгебра 7 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{1106\ (1106).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Системой линейных уравнений называют два и более уравнения с несколькими переменными (буквы x, y и т.д.), для которых необходимо найти общее решение.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство.

Алгоритм решения систем линейных уравнений способом сложения:

1. Умножить (разделить) левую и правую части одного или обоих уравнений на некоторое число так, чтобы коэффициенты (число перед буквой) при одной из переменных в разных уравнениях стали противоположными числами:

\[\left\{ \begin{matrix} \mathbf{x + y = 10\ \ | \bullet ( - 4)\ \ \ \ } \\ \mathbf{4}\mathbf{x + 5}\mathbf{y = 44\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} \mathbf{- 4}\mathbf{x}\mathbf{+}\left( \mathbf{- 4}\mathbf{y} \right)\mathbf{= - 40\ \ } \\ \mathbf{4}\mathbf{x}\mathbf{+ 5}\mathbf{y = 44\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]

2. Сложить получившиеся уравнения почленно:

\[\left\{ \begin{matrix} \mathbf{- 4}\mathbf{x}\mathbf{+}\left( \mathbf{- 4}\mathbf{y} \right)\mathbf{=}\mathbf{- 40}\mathbf{\ } \\ \mathbf{4}\mathbf{x}\mathbf{+}\mathbf{5}\mathbf{y}\mathbf{=}\mathbf{44}\mathbf{\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }} \\ \end{matrix} \right.\ ( + )\]

\[\left\{ \begin{matrix} \mathbf{y = 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \mathbf{4}\mathbf{x}\mathbf{+ 5}\mathbf{y = 44\ } \\ \end{matrix} \right.\ \]

3. Подставить полученное значение в одно из уравнений и найти значение второй переменной:

\[\mathbf{x + 4 = 10}\]

\[\mathbf{x = 10 - 4}\]

\[\mathbf{x = 6}\]

Свойства уравнений с двумя переменными:

1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

2. Если обе части уравнения умножить или разделить на одно и то же число, отличное от нуля, то получится уравнение, равносильное данному.

Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.

Решение.

\[Пусть\ брату\ x\ лет,\ \]

\[а\ сестре\ y\ лет;\]

\[если\ 2\ года\ назад\ брат\ был\ \]

\[старше\ сестры\ в\ 2\ раза,\ тогда:\ \ \ \]

\[x - 2 = (y - 2) \cdot 2.\ Если\ 8\ лет\ \]

\[назад\ брат\ был\ старше\ сестры\ \]

\[в\ 5\ раз,\ тогда:\ \ \]

\[x - 8 = (y - 8) \cdot 5.\]

\[Составим\ и\ решим\ систему\ \]

\[уравнений:\]

\[\left\{ \begin{matrix} x - 2 = 2 \cdot (y - 2) \\ x - 8 = (y - 8) \cdot 5\ \\ \end{matrix} \right.\ \]

\[- 3y = - 30 \Longrightarrow \ \ y = 10\ (лет).\]

\[x = 2y - 2 \Longrightarrow \ \ x = 2 \cdot 10 - 2 =\]

\[= 20 - 2 = 18\ (лет).\]

\[Ответ:брату\ 18\ лет,\ \]

\[а\ сестре\ 10\ лет.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам