\[\boxed{\text{1103.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
\[\textbf{а)}\ \text{M\ }(5;5)\ и\ \ \text{N\ }( - 10;\ - 19)\text{.\ }\]
\[Составим\ систему\ уравнений,\ \]
\[используя\]
\[координаты\ точек:\]
\[\left\{ \begin{matrix} 5 = 5k + b\ \ | \cdot 2 \\ - 19 = - 10k + b \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 10 = 10k + 2b\ \ \ \ \ \\ - 19 = - 10k + b \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} - 9 = 3b\ \ \ \ \ \\ 5k = 5 - b \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} b = - 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 5k = 5 + 3 \longrightarrow k = 1,6 \\ \end{matrix} \right.\ \]
\[тогда\ уравнение\ имеет\ вид:\ \]
\[y = 1,6x - 3.\]
\[\textbf{б)}\ P(4;1)\ и\ \ \text{Q\ }(3;\ - 5)\text{.\ }\]
\[Составим\ систему\ уравнений,\ \]
\[используя\]
\[координаты\ точек:\]
\[\left\{ \begin{matrix} 1 = 4k + b\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ - 5 = 3k + b\ \ | \cdot ( - 1) \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 1 = 4k + b \\ 5 = - 3k - b \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} 6 = k\ \ \ \ \ \ \ \ \ \ \ \\ b = 1 - 4k \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} k = 6\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ b = 1 - 4 \cdot 6 \longrightarrow b = - 23 \\ \end{matrix} \right.\ \]
\[тогда\ уравнение\ имеет\ вид:\]
\[y = 6x - 23.\]
\[\mathbf{в})\ \text{A\ }(8;\ - 1)\ и\ \ \ \text{B\ }( - 4;17)\text{.\ \ }\]
\[Составим\ систему\ уравнений,\]
\[\ используя\]
\[координаты\ точек:\]
\[\left\{ \begin{matrix} - 1 = 8k + b\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 17 = - 4k + b\ \ | \cdot ( - 1) \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} - 1 = 8k + b \\ - 17 = 4k - b \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} 12k = - 18\ \ \ \\ b = - 1 - 8k \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} k = - 1,5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ b = - 1 - 8 \cdot ( - 1,5) \longrightarrow b = 11 \\ \end{matrix} \right.\ \]
\[тогда\ уравнение\ имеет\ вид:\ \]
\[y = - 1,5x + 11.\]
\[\textbf{г)}\ \text{C\ }( - 19;31)\ и\ \ \text{D\ }(1;\ - 9)\text{.\ }\]
\[Составим\ систему\ уравнений,\ \]
\[используя\]
\[координаты\ точек:\]
\[\left\{ \begin{matrix} 31 = - 19k + b\ \ \ \ \ \ \ \ \ \\ - 9 = k + b\ \ | \cdot ( - 1) \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 31 = - 19k + b \\ 9 = - k - b\ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} 40 = - 20k \\ b = - 9 - k \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} k = - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ b = - 9 + 2 = - 7 \\ \end{matrix} \right.\ \]
\[тогда\ уравнение\ имеет\ вид:\ \]
\[y = - 2x - 7.\]
\[\boxed{\text{1103\ (1103).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Системой линейных уравнений называют два и более уравнения с несколькими переменными (буквы x, y и т.д.), для которых необходимо найти общее решение.
Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство.
Алгоритм решения систем линейных уравнений способом сложения:
1. Умножить (разделить) левую и правую части одного или обоих уравнений на некоторое число так, чтобы коэффициенты (число перед буквой) при одной из переменных в разных уравнениях стали противоположными числами:
\[\left\{ \begin{matrix} \mathbf{x + y = 10\ \ | \bullet ( - 4)\ \ \ \ } \\ \mathbf{4}\mathbf{x + 5}\mathbf{y = 44\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \mathbf{- 4}\mathbf{x}\mathbf{+}\left( \mathbf{- 4}\mathbf{y} \right)\mathbf{= - 40\ \ } \\ \mathbf{4}\mathbf{x}\mathbf{+ 5}\mathbf{y = 44\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
2. Сложить получившиеся уравнения почленно:
\[\left\{ \begin{matrix} \mathbf{- 4}\mathbf{x}\mathbf{+}\left( \mathbf{- 4}\mathbf{y} \right)\mathbf{=}\mathbf{- 40}\mathbf{\ } \\ \mathbf{4}\mathbf{x}\mathbf{+}\mathbf{5}\mathbf{y}\mathbf{=}\mathbf{44}\mathbf{\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }} \\ \end{matrix} \right.\ ( + )\]
\[\left\{ \begin{matrix} \mathbf{y = 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \mathbf{4}\mathbf{x}\mathbf{+ 5}\mathbf{y = 44\ } \\ \end{matrix} \right.\ \]
3. Подставить полученное значение в одно из уравнений и найти значение второй переменной:
\[\mathbf{x + 4 = 10}\]
\[\mathbf{x = 10 - 4}\]
\[\mathbf{x = 6}\]
Свойства уравнений с двумя переменными:
1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;
2. Если обе части уравнения умножить или разделить на одно и то же число, отличное от нуля, то получится уравнение, равносильное данному.
Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
Решение.
\[Пусть\ x - длина\ основания,\ \]
\[y - длина\ боковой\ стороны.\ \]
\[Периметр\ равнобедренного\ \]
\[треугольника\ равен\ 43\ см,\ \]
\[тогда:x + 2y = 43.\]
\[Известно,\ что\ основание\ \]
\[на\ 7\ см\ больше\ длины\ \]
\[боковой\ стороны,\]
\[тогда:\ \ x - y = 7.\]
\[Составим\ и\ решим\ систему\ \]
\[уравнений:\]
\[\left\{ \begin{matrix} x + 2y = 43\ \ \ \ \ \ \ \ \ \ \ \\ x - y = 7\ \ | \cdot ( - 1) \\ \end{matrix} \right.\ \]
\[Ответ:боковая\ сторона\ \]
\[треугольника\ равна\ 12\ см.\]