\[\boxed{\mathbf{31.}}\]
\[\textbf{а)}\ x - a + \sqrt{x - a} =\]
\[= 2x + 1 + \sqrt{x - a}\]
\[1)\ x - a \geq 0\]
\[x \geq a.\]
\[2)\ x - a - 2x - 1 = 0\]
\[- x - a - 1 = 0\]
\[x = - a - 1.\]
\[3) - a - 1 \geq a\]
\[2a \leq - 1\]
\[a \leq - \frac{1}{2}.\]
\[Ответ:при\ a \leq - \frac{1}{2}.\]
\[\textbf{б)}\ \frac{a - 2}{ax - 3} = 1\]
\[1)\ ax - 3 \neq 0\]
\[\text{ax} \neq 3\]
\[x \neq \frac{3}{a}.\]
\[2)\ a - 2 = ax - 3\]
\[ax = a - 2 + 3\]
\[ax = a + 1\]
\[x = \frac{a + 1}{a} = 1 + \frac{1}{a};\ \ a \neq 0.\]
\[3)\ 1 + \frac{1}{a} \neq \frac{3}{a}\]
\[\frac{2}{a} \neq 1\]
\[a \neq 2.\]
\[Ответ:при\ a \neq 0;a \neq 2.\]
\[\textbf{в)}\ \frac{1}{\left( \log_{x}5 \right)^{2}} - 2a \cdot \log_{5}x + 1 = 0\]
\[1)\ x > 0;\ \ x \neq 1;\]
\[2)\log_{5}x = t:\]
\[\frac{1}{\left( \frac{1}{t} \right)^{2}} - 2at + 1 =\]
\[= t^{2} - 2at + 1 = 0\]
\[D_{1} = a^{2} - 1\]
\[Уравнение\ имеет\ единственный\]
\[\ корень\ при\ D = 0.\]
\[a^{2} - 1 = 0\]
\[a^{2} = 1\]
\[a = \pm 1.\]
\[3)\ a = 1:\]
\[t = - \frac{b}{2a} = 1;\]
\[a = - 1:\]
\[t = - \frac{b}{2a} = - 1.\]
\[4)\ Проверка.\]
\[\log_{5}x = 1\]
\[x = 5.\]
\[\log_{5}x = - 1\]
\[x = \frac{1}{5}.\]
\[Ответ:\ при\ a = \pm 1.\]