\[\boxed{\mathbf{65}.}\]
\[\textbf{а)}\ \int_{2}^{3}{3xdx} = 3\int_{2}^{3}\text{xdx} =\]
\[= \left. \ 3 \cdot \frac{x^{2}}{2} \right|_{2}^{3} = 3 \cdot \left( \frac{9}{2} - \frac{4}{2} \right) =\]
\[= 3 \cdot (4,5 - 2) = 3 \cdot 2,5 = 7,5.\]
\[\textbf{б)}\ \int_{- 1}^{2}{\left( - 2x^{4} \right)\text{xdx}} =\]
\[= - 2\int_{- 1}^{2}{x^{4}\text{dx}} = \left. \ - 2 \cdot \frac{x^{5}}{5} \right|_{- 1}^{2} =\]
\[= - 2 \cdot \left( \frac{32}{5} + \frac{1}{5} \right) = - 2 \cdot 6,6 =\]
\[= - 13,2.\]
\[\textbf{в)}\ \int_{1}^{e}\frac{\text{dx}}{2} = \frac{1}{2}\int_{1}^{e}\text{xdx} =\]
\[= \left. \ \frac{1}{2} \cdot \ln x \right|_{1}^{e} = \frac{1}{2}\left( \ln e - \ln 1 \right) =\]
\[= \frac{1}{2} = 0,5.\]