\[\boxed{\mathbf{54}.}\]
\[\textbf{а)}\ y = x^{2} - 4x + 6;y = 6\]
\[x^{2} - 4x + 6 = 6\]
\[x^{2} - 4x = 0\]
\[x(x - 4) = 0\]
\[x = 0;\ \ x = 4.\]
\[S_{1} = 6 \cdot 4 = 24\ кв.\ ед.\]
\[S_{2} = \int_{0}^{4}{\left( x^{2} - 4x + 6 \right)\text{dx}} =\]
\[= \left. \ \frac{x^{3}}{3} - 2x^{2} + 6x \right|_{0}^{4} =\]
\[= \frac{4^{3}}{3} - 32 + 24 = 13\frac{1}{3}\ кв.\ ед.\]
\[S = S_{1} - S_{2} = 24 - 13\frac{1}{3} =\]
\[= 10\frac{2}{3}\ кв.\ ед.\]
\[\textbf{б)}\ y = - x^{2} - 4x + 5;\ \ y = 5;\]
\[- x^{2} - 4x + 5 = 5\]
\[- x^{2} - 4x = 0\]
\[- x(x + 4) = 0\]
\[x = 0;\ \ x = - 4;\]
\[S_{1} = 5 \cdot 4 = 20\ ед.\ кв.\]
\[= 0 - \left( - \frac{( - 4)^{3}}{3} - 32 - 20 \right) =\]
\[= - 21\frac{1}{3} + 52 = 30\frac{2}{3}\ кв.ед.\]
\[S = S_{2} - S_{1} = 30\frac{2}{3} - 20 =\]
\[= 10\frac{2}{3}\ кв.ед.\]
\[\textbf{в)}\ y = x^{2} + 1;\ \ y = 3 - x;\]
\[x^{2} + 1 = 3 - x\]
\[x^{2} + x - 2 = 0\]
\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = - 2\]
\[x_{1} = - 2;\ \ x_{2} = 1;\]
\[S_{1} = \frac{2 + 5}{2} \cdot 3 = 10,5\ кв.\ ед.\]
\[S_{2} = \int_{- 2}^{1}{\left( x^{2} + 1 \right)\text{dx}} =\]
\[= \left. \ \frac{x^{3}}{3} + x \right|_{- 2}^{1} =\]
\[= \frac{1}{3} + 1 - \left( \frac{( - 2)^{3}}{3} + ( - 2) \right) =\]
\[= 1 + \frac{1}{3} + \frac{8}{3} + 2 = 6\ кв.\ ед.\]
\[S = S_{1} - S_{2} = 10,5 - 6 =\]
\[= 4\ кв.\ ед.\]
\[\textbf{г)}\ y = 4 - x^{2};\ \ y = x + 2;\]
\[4 - x^{2} = x + 2\]
\[x^{2} + x - 2 = 0\]
\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = - 2\]
\[x_{1} = - 2;\ \ x_{2} = 1;\]
\[S_{1} = \frac{1}{2} \cdot 3 \cdot 3 = 4,5\ кв.ед.\]
\[S_{2} = \int_{- 2}^{1}{\left( 4 - x^{2} \right)\text{dx}} =\]
\[= \left. \ 4x - \frac{x^{3}}{3} \right|_{- 2}^{1} =\]
\[= 4 - \frac{1}{3} - \left( - 8 + \frac{8}{3} \right) = 9\ кв.\ ед.\]
\[S = S_{2} - S_{1} = 9 - 4,5 =\]
\[= 4,5\ кв.\ ед.\]