Решебник по алгебре 11 класс Никольский Параграф 6. Первообразная и интеграл Задание 5

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 5

\[\boxed{\mathbf{5}.}\]

\[\textbf{а)}\ f(x) = (3x + 7)^{10};\]

\[F(x) = \frac{1}{3} \cdot \frac{(3x + 7)^{11}}{11} + C;\]

\[F^{'}(x) = \left( \frac{1}{3} \cdot \frac{(3x + 7)^{11}}{11} + C \right)^{'} =\]

\[= \left( \frac{1}{33} \cdot (3x + 7)^{11} + C \right)^{'} =\]

\[= \left( \frac{1}{33} \cdot (3x + 7)^{11} \right)^{'} + C^{'} =\]

\[= \frac{1}{33} \cdot \left( (3x + 7)^{11} \right)^{'};\]

\[u_{x} = 3x + 7;y_{u} = u^{11}:\]

\[F^{'}(x) = \frac{1}{33} \cdot \left( u^{11} \right)^{'} \cdot (3x + 7)^{'} =\]

\[= \frac{1}{33} \cdot 11u^{10} \cdot 3 = u^{10} =\]

\[= (3x + 7)^{10}.\]

\[F^{'}(x) = f(x) - значит,\ \]

\[F(x)\ первообразная\ для\ f(x).\]

\[\textbf{б)}\ f(x) = \cos(2x - 1);\]

\[F(x) = \frac{1}{2} \cdot \sin(2x - 1) + C;\]

\[F^{'}(x) = \left( \frac{1}{2} \cdot \sin(2x - 1) + C \right)^{'} =\]

\[= \left( \frac{1}{2} \cdot \sin(2x - 1) \right)^{'} + C^{'} =\]

\[= \frac{1}{2}\left( \sin(2x - 1) \right)^{'};\]

\[u_{x} = 2x - 1;\ \ y_{u} = \sin u:\]

\[F^{'}(x) = \frac{1}{2} \cdot \left( \sin u \right)^{'} \cdot (2x - 1)^{'} =\]

\[= \frac{1}{2}\cos u \cdot 2 = \cos u =\]

\[= \cos{(2x - 1)}.\]

\[F^{'}(x) = f(x) - значит,\ \]

\[F(x)\ первообразная\ для\ f(x).\]

\[\textbf{в)}\ f(x) = \sin\left( 7x - \frac{\pi}{4} \right);\]

\[F(x) = - \frac{1}{7} \cdot \cos\left( 7x - \frac{\pi}{4} \right) + C;\]

\[F^{'}(x) =\]

\[= \left( - \frac{1}{7} \cdot \cos\left( 7x - \frac{\pi}{4} \right) + C \right)^{'} =\]

\[= \left( - \frac{1}{7} \cdot \cos\left( 7x - \frac{\pi}{4} \right) \right)^{'} + C^{'} =\]

\[= - \frac{1}{7} \cdot \left( \cos\left( 7x - \frac{\pi}{4} \right) \right)^{'};\]

\[u_{x} = 7x - \frac{\pi}{4};\ \ y_{u} = - \frac{1}{7}\cos u;\]

\[F^{'}(x) =\]

\[= - \frac{1}{7}\left( \cos u \right)^{'} \cdot \left( 7x - \frac{\pi}{4} \right)^{'} =\]

\[= - \frac{1}{7} \cdot \left( - \sin u \right) \cdot 7 = \sin u =\]

\[= \sin\left( 7x - \frac{\pi}{4} \right).\]

\[F^{'}(x) = f(x) - значит,\ \]

\[F(x)\ первообразная\ для\ f(x).\]

Скачать ответ
Есть ошибка? Сообщи нам!