\[\boxed{\mathbf{3}.}\]
\[\textbf{а)}\ f(x) = \sin x;\ \ \]
\[F(x) = - \cos x;\]
\[F^{'}(x) = \left( - \cos x \right)^{'} = \sin x;\]
\[F^{'}(x) = f(x) - значит,\ \]
\[F(x)\ первообразная\ для\ f(x).\]
\[\textbf{б)}\ f(x) = \cos x;\ \ F(x) = \sin x;\]
\[F^{'}(x) = \left( \sin x \right)^{'} = \cos x;\]
\[F^{'}(x) = f(x) - значит,\ \]
\[F(x)\ первообразная\ для\ f(x).\]
\[\textbf{в)}\ f(x) = \frac{1}{\text{co}s^{2}x};\ \ F(x) = tg\ x;\]
\[F^{'}(x) = \left( \text{tg\ x} \right)^{'} = \frac{1}{\text{co}s^{2}x};\]
\[F^{'}(x) = f(x) - значит,\ \]
\[F(x)\ первообразная\ для\ f(x).\]
\[\textbf{г)}\ f(x) = - \frac{1}{\text{si}n^{2}x};\ \ \]
\[F(x) = ctg\ x;\]
\[F^{'}(x) = \left( \text{ctg\ x} \right)^{'} = - \frac{1}{\text{si}n^{2}x};\]
\[F^{'}(x) = f(x) - значит,\ \]
\[F(x)\ первообразная\ для\ f(x).\]
\[\textbf{д)}\ f(x) = e^{x};\ \ F(x) = e^{x};\]
\[F^{'}(x) = \left( e^{x} \right)^{'} = e^{x};\]
\[F^{'}(x) = f(x) - значит,\ \]
\[F(x)\ первообразная\ для\ f(x).\]