\[\boxed{\mathbf{21}.}\]
\[\textbf{а)}\ \int_{}^{}{x\sqrt{1 + x^{2}}\text{dx}}\]
\[1 + x^{2} = t\]
\[2xdx = dt\]
\[xdx = \frac{1}{2}dt:\]
\[\int_{}^{}{\sqrt{t} \cdot \frac{1}{2}\text{dt}} = \frac{1}{2}\int_{}^{}{t^{\frac{1}{2}} \cdot dt} =\]
\[= \frac{1}{2} \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} = \frac{1}{2} \cdot \frac{2}{3} \cdot t^{\frac{3}{2}} + C =\]
\[= \frac{1}{3}\sqrt{t^{3}} + C =\]
\[= \frac{1}{3}\sqrt{\left( 1 + x^{2} \right)^{3}} + C.\]
\[\textbf{б)}\ \int_{}^{}{5x\sqrt{1 + 4x^{2}}\text{dx}}\]
\[1 + 4x^{2} = t\]
\[8xdx = dt\]
\[xdx = \frac{1}{8}dt:\]
\[5\int_{}^{}{\sqrt{t} \cdot \frac{1}{8}\text{dt}} = 5 \cdot \frac{1}{8}\int_{}^{}{t^{\frac{1}{2}} \cdot dt} =\]
\[= \frac{5}{8} \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} = \frac{5}{8} \cdot \frac{2}{3} \cdot t^{\frac{3}{2}} + C =\]
\[= \frac{5}{12}\sqrt{t^{3}} + C =\]
\[= \frac{5}{12}\sqrt{\left( 1 + 4x^{2} \right)^{3}} + C.\]
\[\textbf{в)}\ \int_{}^{}{x\sqrt{4 + x^{2}}\text{dx}}\]
\[4 + x^{2} = t\]
\[2xdx = dt\]
\[xdx = \frac{1}{2}dt:\]
\[\int_{}^{}{\sqrt{t} \cdot \frac{1}{2}\text{dt}} = \frac{1}{2}\int_{}^{}{t^{\frac{1}{2}} \cdot dt} =\]
\[= \frac{1}{2} \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} = \frac{1}{2} \cdot \frac{2}{3} \cdot t^{\frac{3}{2}} + C =\]
\[= \frac{1}{3}\sqrt{t^{3}} + C =\]
\[= \frac{1}{3}\sqrt{\left( 4 + x^{2} \right)^{3}} + C.\]
\[\textbf{г)}\ \int_{}^{}{x\sqrt{9 + x^{2}}\text{dx}}\]
\[9 + x^{2} = t\]
\[2xdx = dt\]
\[xdx = \frac{1}{2}dt:\]
\[\int_{}^{}{\sqrt{t} \cdot \frac{1}{2}\text{dt}} = \frac{1}{2}\int_{}^{}{t^{\frac{1}{2}} \cdot dt} =\]
\[= \frac{1}{2} \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} = \frac{1}{2} \cdot \frac{2}{3} \cdot t^{\frac{3}{2}} + C =\]
\[= \frac{1}{3}\sqrt{t^{3}} + C =\]
\[= \frac{1}{3}\sqrt{\left( 9 + x^{2} \right)^{3}} + C\]