\[\boxed{\mathbf{65.}}\]
\[\textbf{а)}\ x(t) = 5t + \sin{3t} - 2\cos\frac{2}{t};\]
\[r \geq 0 - время\ в\ секундах.\]
\[v(t) = x^{'}(t) = 5 + 3\cos{3t} +\]
\[+ 2 \cdot \frac{1}{2}\sin\frac{t}{2} =\]
\[= 5 + 3\cos{3t} + \sin\frac{t}{2};\]
\[a(t) = x"(t) =\]
\[= - 9 \cdot sin3t + \frac{1}{2}\cos\frac{2}{t};\]
\[v_{0} = v(0) = 5 + 3\cos{3 \cdot 0} +\]
\[+ \sin\frac{0}{2} = 5 + 3 = 8;\]
\[a_{0} = a(0) = - 9\sin{3 \cdot 0} +\]
\[+ \frac{1}{2}\cos\frac{0}{2} = 0,5.\]
\[\textbf{б)}\ x(t) = 3t - \cos{2t} + 3\sin\frac{t}{3};\]
\[r \geq 0 - время\ в\ секундах.\]
\[v(t) = x^{'}(t) = 3 + 2\sin{2t} +\]
\[+ \frac{3}{2}\cos\frac{t}{2};\]
\[a(t) = x"(t) = 4\cos{2t} - \frac{3}{4}\sin\frac{t}{2};\]
\[v_{0} = v(0) = 3 + 2\sin{2 \cdot 0} +\]
\[+ \frac{3}{2}\cos\frac{0}{2} = 4,5;\]
\[a_{0} = a(0) = 4\cos{2 \cdot 0} -\]
\[- \frac{3}{4}\sin\frac{0}{2} = 4.\]