Решебник по алгебре 11 класс Никольский Параграф 5. Применение производной Задание 40

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 40

\[\boxed{\mathbf{40}\mathbf{.}}\]

\[f\left( x_{0} + \mathrm{\Delta}x \right) \approx f\left( x_{0} \right) + f^{'}\left( x_{0} \right)\mathrm{\Delta}x\]

\[f(x) = \sqrt{x};\ \ \ x_{0} = 1;\]

\[f\left( x_{0} + \mathrm{\Delta}x \right) = \sqrt{1 + \mathrm{\Delta}x};\]

\[f\left( x_{0} \right) = \sqrt{1} = 1;\]

\[f^{'}(x) = \frac{1}{2\sqrt{x}};\]

\[f^{'}\left( x_{0} \right) = \frac{1}{2\sqrt{1}} = \frac{1}{2};\]

\[Подставим:\]

\[\sqrt{1 + \mathrm{\Delta}x} \approx 1 + \frac{1}{2}\mathrm{\Delta}x\]

\[Искомая\ формула.\]

\[\textbf{а)}\ \sqrt{1,01};\ \ \mathrm{\Delta}x = 0,01;\]

\[\sqrt{1,01} = 1 + \frac{1}{2} \cdot 0,01 =\]

\[= 1 + 0,005 = 1,005.\]

\[\textbf{б)}\ \sqrt{1,02};\ \ \mathrm{\Delta}x = 0,02;\]

\[\sqrt{1,02} = 1 + \frac{1}{2} \cdot 0,02 =\]

\[= 1 + 0,01 = 1,01.\]

\[\textbf{в)}\ \sqrt{0,99};\ \ \mathrm{\Delta}x = - 0,01;\]

\[\sqrt{0,99} = 1 + \frac{1}{2} \cdot ( - 0,01) =\]

\[= 1 - 0,005 = 0,995.\]

\[\textbf{г)}\ \sqrt{0,98};\ \ \mathrm{\Delta}x = - 0,02;\]

\[\sqrt{0,98} = 1 + \frac{1}{2} \cdot ( - 0,02) =\]

\[= 1 - 0,01 = 0,99.\]

Скачать ответ
Есть ошибка? Сообщи нам!