\[\boxed{\mathbf{31.}}\]
\[\textbf{а)}\ f(x) = x^{2} + 4x - 12;\]
\[\ \ f'\left( x_{0} \right) = 0\]
\[f^{'}(x) = 2x + 4;\]
\[2x + 4 = 0\]
\[2x = - 4\]
\[x = - 2.\]
\[Ответ:x = - 2.\]
\[\textbf{б)}\ f(x) = 3x^{2} - 12x + 11;\ \]
\[\ f'\left( x_{0} \right) = 0\]
\[f^{'}(x) = 6x - 12;\]
\[6x - 12 = 0\]
\[6x = 12\]
\[x = 2.\]
\[Ответ:x = 2.\]
\[\textbf{в)}\ f(x) = x^{3} - 12x^{2} + 36x - 1;\ \ \]
\[f'\left( x_{0} \right) = 0\]
\[f^{'}(x) = 3x^{2} - 24x + 36;\]
\[3x^{2} - 24x + 36 = 0\ \ \ \ |\ :3\]
\[x^{2} - 8x + 12 = 0\]
\[D_{1} = 16 - 12 = 4\]
\[x_{1} = 4 + 2 = 6;\]
\[x_{2} = 4 - 2 = 2.\]
\[Ответ:x = 6;x = 2.\]
\[\textbf{г)}\ f(x) = 2x^{3} + 6x^{2} - 7;\ \ \]
\[f'\left( x_{0} \right) = 0\]
\[f^{'}(x) = 6x^{2} + 12x;\]
\[6x^{2} + 12x = 0\]
\[6x(x + 2) = 0\]
\[x = 0;\ \ x = - 2.\]
\[Ответ:x = - 2;x = 0.\]