Решебник по алгебре 11 класс Никольский Параграф 5. Применение производной Задание 29

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 29

\[\boxed{\mathbf{29.}}\]

\[\textbf{а)}\ f(x) = e^{x};\ \ x_{0} = - 2\]

\[f^{'}(x) = e^{x};\]

\[y_{0} = f( - 2) = e^{- 2} = \frac{1}{e^{2}};\]

\[k = f^{'}( - 2) = e^{- 2} = \frac{1}{e^{2}};\]

\[y - y_{0} = k\left( x - x_{0} \right)\]

\[y - \frac{1}{e^{2}} = \frac{1}{e^{2}}(x + 2)\]

\[y - \frac{1}{e^{2}} = \frac{1}{e^{2}}x + \frac{2}{e^{2}}\]

\[y = \frac{1}{e^{2}}x + \frac{3}{e^{2}}.\]

\[Уравнение\ касательной:\]

\[y = \frac{1}{e^{2}}x + \frac{3}{e^{2}}.\]

\[\textbf{б)}\ f(x) = e^{x};\ \ x_{0} = - 1\]

\[f^{'}(x) = e^{x};\]

\[y_{0} = f( - 1) = e^{- 1} = \frac{1}{e};\]

\[k = f^{'}( - 1) = e^{- 1} = \frac{1}{e};\]

\[y - y_{0} = k\left( x - x_{0} \right)\]

\[y - \frac{1}{e} = \frac{1}{e}(x + 1)\]

\[y - \frac{1}{e} = \frac{1}{e}x + \frac{1}{e}\]

\[y = \frac{1}{e}x + \frac{2}{e}.\]

\[Уравнение\ касательной:\]

\[y = \frac{1}{e}x + \frac{2}{e}.\]

\[\textbf{в)}\ f(x) = e^{x};\ \ x_{0} = 0\]

\[f^{'}(x) = e^{x};\]

\[y_{0} = f(0) = e^{0} = 1;\]

\[k = f^{'}(0) = e^{0} = 1;\]

\[y - y_{0} = k\left( x - x_{0} \right)\]

\[y - 1 = 1(x - 0)\]

\[y - 1 = x\]

\[y = x + 1\]

\[Уравнение\ касательной:\]

\[y = x + 1.\]

\[\textbf{г)}\ f(x) = e^{x};\ \ x_{0} = 2\]

\[f^{'}(x) = e^{x};\]

\[y_{0} = f(2) = e^{2};\]

\[k = f^{'}(2) = e^{2};\]

\[y - y_{0} = k\left( x - x_{0} \right)\]

\[y - e^{2} = e^{2}(x - 2)\]

\[y - e^{2} = e^{2}x - 2e^{2}\]

\[y = e^{2}x - e^{2}.\]

\[Уравнение\ касательной:\]

\[y = e^{2}x - e^{2}.\]

Скачать ответ
Есть ошибка? Сообщи нам!