\[\boxed{\mathbf{26.}}\]
\[\textbf{а)}\ f(x) = \ln x;\ \ x_{0} = 1\]
\[f^{'}(x) = \left( \ln x \right)^{'} = \frac{1}{x};\]
\[y_{0} = f(1) = \ln 1 = 0;\]
\[k = f^{'}(1) = \frac{1}{1} = 1;\]
\[y - y_{0} = k\left( x - x_{0} \right)\]
\[y - 0 = 1(x - 1)\]
\[y = x - 1.\]
\[Уравнение\ касательной:\ \ \]
\[y = x - 1.\]
\[\textbf{б)}\ f(x) = \ln x;\ \ x_{0} = 2\]
\[f^{'}(x) = \left( \ln x \right)^{'} = \frac{1}{x};\]
\[y_{0} = f(2) = \ln 2;\]
\[k = f^{'}(2) = \frac{1}{2} = 0,5;\]
\[y - y_{0} = k\left( x - x_{0} \right)\]
\[y - \ln 2 = 0,5(x - 2)\]
\[y = 0,5x - 1 + \ln 2.\]
\[Уравнение\ касательной:\ \ \]
\[y = 0,5x - 1 + \ln 2.\]
\[\textbf{в)}\ f(x) = \ln x;\ \ x_{0} = 3\]
\[f^{'}(x) = \left( \ln x \right)^{'} = \frac{1}{x};\]
\[y_{0} = f(3) = \ln 3;\]
\[k = f^{'}(3) = \frac{1}{3};\]
\[y - y_{0} = k\left( x - x_{0} \right)\]
\[y - \ln 3 = \frac{1}{3}(x - 3)\]
\[y = \frac{1}{3}x - 1 + \ln 3.\]
\[Уравнение\ касательной:\ \ \]
\[y = \frac{1}{3}x - 1 + \ln 3.\]
\[\textbf{г)}\ f(x) = \ln x;\ \ x_{0} = e\]
\[f^{'}(x) = \left( \ln x \right)^{'} = \frac{1}{x};\]
\[y_{0} = f(e) = \ln e = 1;\]
\[k = f^{'}(e) = \frac{1}{e};\]
\[y - y_{0} = k\left( x - x_{0} \right)\]
\[y - 1 = \frac{1}{e}(x - e)\]
\[y - 1 = \frac{1}{x}e - 1\]
\[y = \frac{1}{x}\text{e.}\]
\[Уравнение\ касательной:\ \ \]
\[y = \frac{1}{x}\text{e.}\]