\[\boxed{\mathbf{20}\mathbf{.}}\]
\[\textbf{а)}\ f(x) = x^{2} + 2x - 3;\ \ x_{0} = 0\]
\[f^{'}(x) = 2x + 2;\]
\[y_{0} = f(0) = - 3;\]
\[k = f^{'}(0) = 2 \cdot 0 + 2 = 2.\]
\[y - y_{0} = k\left( x - x_{0} \right)\]
\[y + 3 = 2 \cdot (x - 0)\]
\[y + 3 = 2x\]
\[y = 2x - 3.\]
\[Уравнение\ касательной:\ \]
\[\ y = 2x - 3.\]
\[\textbf{б)}\ f(x) = x^{2} + 2x - 3;\ \ x_{0} = 1\]
\[f^{'}(x) = 2x + 2;\]
\[y_{0} = f(1) = 1 + 2 - 3 = 0;\]
\[k = f^{'}(1) = 2 \cdot 1 + 2 = 4.\]
\[y - y_{0} = k\left( x - x_{0} \right)\]
\[y + 0 = 4 \cdot (x - 1)\]
\[y = 4x - 4.\]
\[Уравнение\ касательной:\ \]
\[\ y = 4x - 4.\]
\[\textbf{в)}\ f(x) = x^{2} + 2x - 3;\ \ x_{0} = - 1\]
\[f^{'}(x) = 2x + 2;\]
\[y_{0} = f( - 1) = 1 - 2 - 3 = - 4;\]
\[k = f^{'}( - 1) = - 2 + 2 = 0.\]
\[y - y_{0} = k\left( x - x_{0} \right)\]
\[y + 4 = 0 \cdot (x + 1)\]
\[y + 4 = 0\]
\[y = - 4.\]
\[Уравнение\ касательной:\ \ y = - 4.\]
\[\textbf{г)}\ f(x) = x^{2} + 2x - 3;\ \ x_{0} = - 2\]
\[f^{'}(x) = 2x + 2;\]
\[y_{0} = f( - 2) = 4 - 4 - 3 = - 3;\]
\[k = f^{'}( - 2) = - 4 + 2 = - 2.\]
\[y - y_{0} = k\left( x - x_{0} \right)\]
\[y + 3 = - 2 \cdot (x + 2)\]
\[y + 3 = - 2x - 4\]
\[y = - 2x - 7.\]
\[Уравнение\ касательной:\ \]
\[\ y = - 2x - 7.\]