\[\boxed{\mathbf{104}\mathbf{.}}\]
\[\textbf{а)}\ y = \frac{2x^{2} + 1}{x}\]
\[k = \lim_{x \rightarrow + \infty}\frac{2x^{2} + 1}{x} =\]
\[= \lim_{x \rightarrow + \infty}\left( 2 + \frac{1}{x^{2}} \right) = 2;\]
\[b = \lim_{x \rightarrow + \infty}\left( \frac{2x^{2} + 1}{x} - 2x \right) =\]
\[= \lim_{x \rightarrow + \infty}\frac{1}{x} = 0.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow + \infty:\]
\[y = 2x.\]
\[k = \lim_{x \rightarrow - \infty}\frac{f(x)}{x} = 2;\]
\[b = \lim_{x \rightarrow - \infty}\left( f(x) - kx \right) = 0.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow - \infty:\]
\[y = 2x.\]
\[Вертикальная\ асимптота:\]
\[x = 0.\]
\[Ответ:k = 2;b = 0;y = 2x.\]
\[\textbf{б)}\ y = \frac{2x^{2} - 1}{x}\]
\[k = \lim_{x \rightarrow + \infty}\frac{2x^{2} - 1}{x} =\]
\[= \lim_{x \rightarrow + \infty}\left( 2 - \frac{1}{x^{2}} \right) = 2;\]
\[b = \lim_{x \rightarrow + \infty}\left( \frac{2x^{2} - 1}{x} - 2x \right) =\]
\[= \lim_{x \rightarrow + \infty}\frac{1}{x} = 0.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow + \infty:\]
\[y = 2x.\]
\[k = \lim_{x \rightarrow - \infty}\frac{f(x)}{x} = 2;\]
\[b = \lim_{x \rightarrow - \infty}\left( f(x) - kx \right) = 0.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow - \infty:\]
\[y = 2x.\]
\[Вертикальная\ асимптота:\]
\[x = 0.\]
\[Ответ:k = 2;b = 0;y = 2x.\]
\[\textbf{в)}\ y = \frac{2x^{2} - 5x + 5}{x - 2}\]
\[k = \lim_{x \rightarrow + \infty}\frac{2x^{2} - 5x + 5}{x - 2} =\]
\[= \lim_{x \rightarrow + \infty}\left( \frac{2 - \frac{5}{x} + \frac{5}{x^{2}}}{1 - \frac{2}{x}} \right) = 2;\]
\[b = \lim_{x \rightarrow + \infty}\left( \frac{2x^{2} - 5x + 5}{x - 2} - 2x \right) =\]
\[= \lim_{x \rightarrow + \infty}\frac{2x^{2} - 5x + 5 - 2x^{2} + 4x}{x - 2} =\]
\[= - 1.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow + \infty:\]
\[y = 2x - 1.\]
\[k = \lim_{x \rightarrow - \infty}\frac{f(x)}{x} = 2;\]
\[b = \lim_{x \rightarrow - \infty}\left( f(x) - kx \right) = - 1.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow - \infty:\]
\[y = 2x - 1.\]
\[Вертикальная\ асимптота:\]
\[x = 2.\]
\[Ответ:k = 2;b = - 1;\]
\[y = 2x - 1.\]
\[\textbf{г)}\ y = \frac{3x^{2} + 2x - 1}{x + 1}\]
\[k = \lim_{x \rightarrow + \infty}\frac{3x^{2} + 2x - 1}{x + 1} =\]
\[= \lim_{x \rightarrow + \infty}\left( \frac{3 + \frac{2}{x} - \frac{1}{x^{2}}}{1 + \frac{1}{x}} \right) = 3;\]
\[b =\]
\[= \lim_{x \rightarrow + \infty}\left( \frac{3x^{2} + 2x - 1}{x + 1} - 2x \right) =\]
\[= \lim_{x \rightarrow + \infty}\frac{3x^{2} + 2x - 1 - 3x^{2} - 3x}{x + 1} =\]
\[= - 1.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow + \infty:\]
\[y = 3x - 1.\]
\[k = \lim_{x \rightarrow - \infty}\frac{f(x)}{x} = 3;\]
\[b = \lim_{x \rightarrow - \infty}\left( f(x) - kx \right) = - 1.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow - \infty:\]
\[y = 3x - 1.\]
\[Ответ:k = 3;b = - 1;\]
\[y = 3x - 1.\]
\[\textbf{д)}\ y = \frac{x^{2} - 2x + 1}{3x + 1}\]
\[k = \lim_{x \rightarrow + \infty}\frac{x^{2} - 2x + 1}{3x + 1} =\]
\[= \lim_{x \rightarrow + \infty}\left( \frac{1 - \frac{2}{x} + \frac{1}{x^{2}}}{3 + \frac{1}{x}} \right) = \frac{1}{3};\]
\[b = \lim_{x \rightarrow + \infty}\left( \frac{x^{2} - 2x + 1}{3x + 1} - \frac{1}{3} \right) =\]
\[= \lim_{x \rightarrow + \infty}\frac{3x^{2} - 6x + 3 - 3x^{2} - 1}{3x^{2} + 1} =\]
\[= 0.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow + \infty:\]
\[y = \frac{1}{3}\text{x.}\]
\[k = \lim_{x \rightarrow - \infty}\frac{f(x)}{x} = \frac{1}{3};\]
\[b = \lim_{x \rightarrow - \infty}\left( f(x) - kx \right) = 0.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow - \infty:\]
\[y = \frac{1}{3}\text{x.}\]
\[Ответ:k = \frac{1}{3};b = 0;y = \frac{1}{3}\text{x.}\]
\[\textbf{е)}\ y = \frac{x^{2} + 2x + 1}{2x - 1}\]
\[k = \lim_{x \rightarrow + \infty}\frac{x^{2} + 2x + 1}{2x - 1} =\]
\[= \lim_{x \rightarrow + \infty}\left( \frac{1 + \frac{2}{x} + \frac{1}{x^{2}}}{2 - \frac{1}{x^{2}}} \right) = \frac{1}{2};\]
\[b = \lim_{x \rightarrow + \infty}\left( \frac{x^{2} + 2x + 1}{2x - 1} - \frac{1}{2} \right) =\]
\[= \frac{5}{2}.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow + \infty:\]
\[y = \frac{1}{2}x + \frac{5}{2}.\]
\[k = \lim_{x \rightarrow - \infty}\frac{f(x)}{x} = \frac{1}{2};\]
\[b = \lim_{x \rightarrow - \infty}\left( f(x) - kx \right) = \frac{5}{2}.\]
\[Наклонная\ асимптота\ \]
\[при\ x \rightarrow - \infty:\]
\[y = \frac{1}{2}x + \frac{5}{2}.\]
\[Ответ:k = \frac{1}{2};b = \frac{5}{2};\]
\[y = \frac{1}{2}x + \frac{5}{2}.\]