\[\boxed{\mathbf{72}\mathbf{.}}\]
\[y = arcctg\ (x);\ \ x \in R\]
\[x = ctg\ y;\ \ y \in (0;\ \pi)\]
\[x^{'}(y) = - \frac{1}{\sin^{2}y};\]
\[f^{'}(x) = \frac{1}{- \frac{1}{\sin^{2}y}} =\]
\[= - \frac{1}{\frac{\sin^{2}y + \cos^{2}y}{\sin^{2}y}} =\]
\[= - \frac{1}{\frac{\sin^{2}y}{\sin^{2}y} + \frac{\cos^{2}y}{\sin^{2}y}} =\]
\[= - \frac{1}{1 + ctg^{2}y} = - \frac{1}{1 + x^{2}}.\]