\[\boxed{\mathbf{56}\mathbf{.}}\]
\[\textbf{а)}\ f(x) = \left( \cos x \right)^{4} - \left( \sin x \right)^{4};\ \ \]
\[x \in R\]
\[f^{'}(x) = 4\left( \cos x \right)^{3} \cdot \left( - \sin x \right) -\]
\[- 4\left( \sin x \right)^{3} \cdot \cos x =\]
\[= - 4\cos^{3}x \cdot \sin x -\]
\[- 4\sin^{3}x \cdot \cos x =\]
\[= - 4\cos x\sin x \cdot \left( \cos^{2}x + \sin^{2}x \right) =\]
\[= - 2 \cdot 2\cos x\sin x = - 2\sin{2x}.\]
\[\textbf{б)}\ f(x) = 4\cos{17x}\cos{13x} =\]
\[= 4 \cdot \frac{\cos(17x - 13x) + \cos(17x + 13x)}{2} =\]
\[= 2(\cos{4x} + \cos{30x});\ \ x \in R\]
\[f^{'}(x) = 2 \cdot \left( - 4\sin{4x} - 30\sin{30x} \right) =\]
\[= - 60\sin{30x} - 8\sin{4x}.\]
\[\textbf{в)}\ f(x) = 5\sin{10x}\cos{8x} =\]
\[= 5 \cdot \frac{\sin(10x + 8x) + \sin(10x - 8x)}{2} =\]
\[= 2,5 \cdot \left( \sin{18x} + \sin{2x} \right);\ \ x \in R\]
\[f^{'}(x) =\]
\[= 2,5 \cdot \left( 18\cos{18x} + 2\cos{2x} \right) =\]
\[= 45\cos{18x} + 5\cos{2x}.\]
\[{г)\ f(x) = 6\sin{7x}\sin{3x} = }{= 6 \cdot \frac{\cos(7x - 3x) - \cos(7x + 3x)}{2} =}\]
\[= 3 \cdot \left( \cos{4x} - \cos{10x} \right);\ \ x \in R\]
\[f^{'}(x) =\]
\[= 3 \cdot \left( - 4\sin{4x} + 10\sin{10x} \right) =\]
\[= - 12\sin{4x} + 30\sin{10x}.\]