\[\boxed{\mathbf{54}\mathbf{.}}\]
\[\textbf{а)}\ f(x) = e^{x^{3}};\ \ \ x \in R\]
\[y = e^{u};\ \ u = x^{3};\ \]
\[f^{'}(x) = \left( e^{u} \right)_{u}^{'} \cdot \left( x^{3} \right)_{x}^{'} =\]
\[= e^{u} \cdot 3x^{2} = 3x^{2}e^{x^{3}}.\]
\[\textbf{б)}\ \ f(x) = e^{- x^{4}};\ \ x \in R\]
\[y = e^{u};\ \ u = - x^{4};\ \]
\[f^{'}(x) = \left( e^{u} \right)_{u}^{'} \cdot \left( {- x}^{4} \right)_{x}^{'} =\]
\[= e^{u} \cdot \left( - 4x^{3} \right) = - 4x^{3}e^{{- x}^{4}}.\]
\[\textbf{в)}\ f(x) = 3^{x^{3}};\ \ x \in R\]
\[y = 3^{u};\ \ u = x^{3};\ \]
\[f^{'}(x) = \left( 3^{u} \right)_{u}^{'} \cdot \left( x^{3} \right)_{x}^{'} =\]
\[= 3^{u}\ln 3 \cdot 3x^{2} = 3x^{2}3^{x^{3}}\ln 3.\]
\[\textbf{г)}\ f(x) = 5^{- x^{4}};\ \ x \in R\]
\[y = 5^{u};\ \ u = - x^{4};\ \]
\[f^{'}(x) = \left( 5^{u} \right)_{u}^{'} \cdot \left( {- x}^{4} \right)_{x}^{'} =\]
\[\text{=}5^{u}\ln 5 \cdot \left( - 4x^{3} \right) =\]
\[= - 4x^{3}5^{{- x}^{4}}\ln 5.\]
\[\textbf{д)}\ y = e^{\sin x};\ \ x \in R\]
\[y = e^{u};\ \ u = \sin x;\ \]
\[f^{'}(x) = \left( e^{u} \right)_{u}^{'} \cdot \left( \sin x \right)_{x}^{'} =\]
\[= e^{u} \cdot \cos x = e^{\sin x} \cdot \cos x.\]
\[\textbf{е)}\ f(x) = 9^{\cos x};\ \ x \in R\]
\[y = 9^{u};\ \ u = \cos x;\ \]
\[f^{'}(x) = \left( 9^{u} \right)_{u}^{'} \cdot \left( \cos x \right)_{x}^{'} =\]
\[= 9^{u}\ln 9 \cdot {( - sin}x) =\]
\[= - \sin x \cdot 9^{\cos x}\ln 9.\]