\[\boxed{\mathbf{47}\mathbf{.}}\]
\[1)\ y = \cos x;\ \ x \in R\]
\[\left( \cos x \right)^{'} = - \sin x;\ \ \mathrm{\Delta}x \neq 0;\]
\[\mathrm{\Delta}f = \cos(x + \mathrm{\Delta}x) - \cos x =\]
\[= - 2\sin\frac{x + \mathrm{\Delta}x + x}{2}\sin\frac{x + \mathrm{\Delta}x - x}{2} =\]
\[= - 2\sin\left( x + \frac{\mathrm{\Delta}x}{2} \right) \cdot \sin\frac{\mathrm{\Delta}x}{2} =\]
\[= - \sin\left( x + \frac{\mathrm{\Delta}x}{2} \right) \cdot \frac{\sin\frac{\mathrm{\Delta}x}{2}}{\frac{\mathrm{\Delta}x}{2}} \cdot \mathrm{\Delta}x;\]
\[при\ \mathrm{\Delta}x \rightarrow 0:\]
\[\frac{\sin\frac{\mathrm{\Delta}x}{2}}{\frac{\mathrm{\Delta}x}{2}} \rightarrow 1;\]
\[\sin\left( x + \frac{\mathrm{\Delta}x}{2} \right) \rightarrow \sin x;\]
\[тогда:\]
\[\frac{\mathrm{\Delta}f}{\mathrm{\Delta}x} \rightarrow - \sin x.\]
\[Следовательно:\]
\[\left( \cos x \right)^{'} = \lim_{x \rightarrow 0}\frac{\mathrm{\Delta}f}{\mathrm{\Delta}x} = - \sin x.\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ y = ctg\ x;\ x \neq \pi k;\ \ k \in Z\ \]
\[\left( \text{ctg\ x} \right)^{'} = - \frac{1}{\sin^{2}x};\]
\[y = ctg\ x = \frac{\cos x}{\sin x};\]
\[\left( \frac{\cos x}{\sin x} \right)^{'} =\]
\[= \frac{\left( \cos x \right)^{'} \cdot \sin x - \cos x \cdot \left( \sin x \right)^{'}}{\sin^{2}x} =\]
\[= \frac{- \sin x \cdot \sin x - \cos x \cdot \cos x}{\sin^{2}x} =\]
\[= \frac{- \left( \sin^{2}x + \cos^{2}x \right)}{\sin^{2}x} = - \frac{1}{\sin^{2}x}.\]
\[Что\ и\ требовалось\ доказать.\]