\[\boxed{\mathbf{3}\mathbf{.}}\]
\[1)\ s = 3t + 5\]
\[\textbf{а)}\ \mathrm{\Delta}s = 3 \cdot (t + \mathrm{\Delta}t) + 5 - 3t -\]
\[- 5 = 3t + 3\mathrm{\Delta}t + 5 - 3t -\]
\[- 5 = 3\mathrm{\Delta}t.\]
\[\textbf{б)}\ v = \frac{\mathrm{\Delta}s}{\mathrm{\Delta}t} = \frac{3\mathrm{\Delta}t}{\mathrm{\Delta}t} = 3.\]
\[\textbf{в)}\ \lim_{\mathrm{\Delta}t \rightarrow 0}3 = 3:\]
\[мгновенная\ скорость\ не\]
\[\ зависит\ от\ времени.\]
\[2)\ s = t^{2} - 6t\]
\[\textbf{а)}\ \mathrm{\Delta}s = (t + \mathrm{\Delta}t)^{2} - 6(t + \mathrm{\Delta}t) -\]
\[- t^{2} + 6t =\]
\[= t^{2} + 2t \cdot \mathrm{\Delta}t + (\mathrm{\Delta}t)^{2} - 6t -\]
\[- 6\mathrm{\Delta}t - t^{2} + 6t =\]
\[= 2t \cdot \mathrm{\Delta}t + (\mathrm{\Delta}t)^{2} - 6\mathrm{\Delta}t.\]
\[\textbf{б)}\ v = \frac{\mathrm{\Delta}s}{\mathrm{\Delta}t} =\]
\[= \frac{2t \cdot \mathrm{\Delta}t + (\mathrm{\Delta}t)^{2} - 6\mathrm{\Delta}t}{\mathrm{\Delta}t} =\]
\[= 2t + \mathrm{\Delta}t - 6.\]
\[\textbf{в)}\ \lim_{\mathrm{\Delta}t \rightarrow 0}{2t + \mathrm{\Delta}t - 6} = 2t - 6:\]
\[мгновенная\ скорость\ зависит\]
\[\ от\ времени.\ \]