Решебник по алгебре 11 класс Никольский Параграф 4. Производная Задание 22

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 22

\[\boxed{\mathbf{22}\mathbf{.}}\]

\[\textbf{а)}\ f'(x) = 6x\]

\[f^{'}(x) = \left( Ax^{n} + C \right)^{'} =\]

\[= a \cdot n \cdot x^{n - 1}\]

\[6x = A \cdot n \cdot x^{n - 1}\]

\[n - 1 = 1\]

\[n = 2.\]

\[6x = A \cdot 2x\]

\[A = 3.\]

\[f(x) = 3x^{2} + C;\ \ C - любое\]

\[\ число:\]

\[f(x) = 3x^{2} - 10.\]

\[\textbf{б)}\ f^{'}(x) = x^{2} - 1\]

\[f(x) = \left( Ax^{n} + Bx^{m} + C \right)^{'} =\]

\[= Anx^{n - 1} + Bmx^{m - 1}\]

\[x^{2} - 1 = Anx^{n - 1} + Bmx^{m - 1}\]

\[n - 1 = 2\]

\[n = 3;\ \]

\[A = \frac{1}{3}.\]

\[m - 1 = 0\]

\[m = 1;\]

\[B = - 1.\]

\[f(x) = \frac{1}{3}x^{3} + x + C;\ \ \]

\[C - любое\ число:\]

\[f(x) = \frac{1}{3}x^{2} - x + 5.\]

\[\textbf{в)}\ f^{'}(x) = 3x^{2} + 2x - 5\]

\[f(x) = \left( Ax^{n} + Bx^{m} + Dx^{k} + C \right)^{'} =\]

\[= Anx^{n - 1} + Bmx^{m - 1} + Dkx^{k - 1}\]

\[3x^{2} + 2x - 5 = Anx^{n - 1} +\]

\[+ Bmx^{m - 1} + Dkx^{k - 1}\]

\[n - 1 = 2\]

\[n = 3;\]

\[A = 1.\]

\[m - 1 = 1\]

\[m = 2;\]

\[B = 1.\]

\[k - 1 = 0\]

\[k = 1;\]

\[D = - 5.\]

\[f(x) = x^{3} + x^{2} - 5x + C;\ \]

\[\ C - любое\ число:\]

\[f(x) = x^{3} + x^{2} - 5x - 1.\]

\[\textbf{г)}\ f^{'}(x) = 6x^{2} - 4x + 7\]

\[f(x) = \left( Ax^{n} + Bx^{m} + Dx^{k} + C \right)^{'} =\]

\[= Anx^{n - 1} + Bmx^{m - 1} + Dkx^{k - 1}\]

\[6x^{2} - 4x + 7 = Anx^{n - 1} +\]

\[+ Bmx^{m - 1} + Dkx^{k - 1}\]

\[n - 1 = 2\]

\[n = 3;\]

\[A = 2.\]

\[m - 1 = 1\]

\[m = 2;\]

\[B = - 2.\]

\[k - 1 = 0\]

\[k = 1;\]

\[D = 7.\]

\[f(x) = 2x^{3} - 2x^{2} + 7x + C;\ \ \]

\[C - любое\ число:\]

\[f(x) = 2x^{3} - 2x^{2} + 7x - 5.\]

Скачать ответ
Есть ошибка? Сообщи нам!