\[\boxed{\mathbf{3}\mathbf{.}}\]
\[\textbf{а)}\ y = 3x + 1\]
\[x = 3y + 1\]
\[3y = x - 1\]
\[y = \frac{1}{3}x - \frac{1}{3}.\]
\[\textbf{б)}\ y = 2x - 8\]
\[x = 2y - 8\]
\[2y = x + 8\]
\[y = \frac{1}{2} + 4.\]
\[\textbf{в)}\ y = x^{2};\ \ x \in \lbrack 0;3\rbrack\]
\[0 \leq x \leq 3\]
\[0 \leq x^{2} \leq 9\]
\[0 \leq y \leq 9\]
\[y \in \lbrack 0;9\rbrack.\]
\[x = y^{2}\]
\[y = \sqrt{x};\ \ x \in \lbrack 0;9\rbrack.\]
\[\textbf{г)}\ y = - x^{2};\ \ x \in \lbrack 0;3\rbrack\]
\[0 \leq x \leq 3\]
\[0 \leq x^{2} \leq 9\]
\[- 9 \leq - x^{2} \leq 0\]
\[- 9 \leq y \leq 0\]
\[y \in \lbrack - 9;0\rbrack.\]
\[x = - y^{2}\]
\[y^{2} = - x\]
\[y = \sqrt{- x};\ \ x \in \lbrack - 9;0\rbrack.\]
\[\textbf{д)}\ y = 8x^{3}\]
\[x = 8y^{3}\]
\[y^{3} = \frac{x}{8}\]
\[y = \sqrt[3]{\frac{x}{8}} = \frac{1}{2}\sqrt[3]{x}.\]
\[\textbf{е)}\ y = 0,5\sqrt{x};\ x \in \lbrack 0;25\rbrack\]
\[0 \leq x \leq 25\]
\[0 \leq \sqrt{x} \leq \sqrt{25}\]
\[0 \leq \sqrt{x} \leq 5\]
\[0,5 \cdot 0 \leq 0,5\sqrt{x} \leq 0,5 \cdot 5\]
\[0 \leq 0,5\sqrt{x} \leq 2,5\]
\[0 \leq y \leq 2,5\]
\[y \in \lbrack 0;2,5\rbrack\text{.\ \ }\]
\[x = 0,5\sqrt{y}\]
\[\sqrt{y} = 2x\]
\[y = (2x)^{2} = 4x^{2};\ \ x \in \lbrack 0;2,5\rbrack.\]
\[\textbf{ж)}\ y = 3^{x}\]
\[x = 3^{y}\]
\[y = \log_{3}x.\]
\[\textbf{з)}\ y = \log_{5}x;\ \ x \in (0;25)\]
\[0 < x < 25\]
\[\lim_{x \rightarrow 0}{\log_{5}x} < \log_{5}x < \log_{5}25\]
\[- \infty < y < 2\]
\[y \in ( - \infty;2).\]
\[x = \log_{5}y\]
\[y = 5^{x};\ \ x \in ( - \infty;2).\]