\[\boxed{\mathbf{18.}}\]
\[\mathbf{Второй\ замечательный\ предел:}\]
\[\lim_{x \rightarrow \infty}(1 + x)^{\frac{1}{x}} = e.\]
\[\mathbf{а)\ }\lim_{x \rightarrow \infty}\left( 1 + \frac{1}{x} \right)^{3x}\]
\[x = \frac{1}{y}:\]
\[\lim_{x \rightarrow \infty}\left( (1 + y)^{\frac{1}{y}} \right)^{3} =\]
\[= \left( \lim_{x \rightarrow \infty}(1 + y)^{\frac{1}{y}} \right)^{3} = e^{3}.\]
\[\mathbf{б)\ }\lim_{x \rightarrow \infty}\left( 1 + \frac{1}{3x} \right)^{x}\]
\[x = \frac{1}{3y}:\]
\[\lim_{x \rightarrow \infty}(1 + y)^{\frac{1}{3y}} =\]
\[= \lim_{x \rightarrow \infty}\left( (1 + y)^{\frac{1}{y}} \right)^{\frac{1}{3}} =\]
\[= \left( \lim_{x \rightarrow \infty}(1 + y)^{\frac{1}{y}} \right)^{\frac{1}{3}} = e^{\frac{1}{3}}.\]
\[\textbf{в)}\ \lim_{x \rightarrow \infty}\left( 1 + \frac{1}{5x} \right)^{2x}\]
\[x = \frac{1}{5y}:\]
\[\lim_{x \rightarrow \infty}(1 + y)^{\frac{2}{5y}} =\]
\[= \lim_{x \rightarrow \infty}\left( (1 + y)^{\frac{1}{y}} \right)^{\frac{2}{5}} =\]
\[= \left( \lim_{x \rightarrow \infty}(1 + y)^{\frac{1}{y}} \right)^{\frac{2}{5}} = e^{\frac{2}{5}}.\]
\[\textbf{г)}\ \lim_{x \rightarrow \infty}\left( 1 - \frac{1}{4x} \right)^{2x}\]
\[x = - \frac{1}{4y}:\]
\[\lim_{x \rightarrow \infty}(1 + y)^{- \frac{2}{4y}} =\]
\[= \lim_{x \rightarrow \infty}\left( (1 + y)^{\frac{1}{y}} \right)^{- \frac{1}{2}} =\]
\[= \left( \lim_{x \rightarrow \infty}(1 + y)^{\frac{1}{y}} \right)^{- \frac{1}{2}} = e^{- \frac{1}{2}}.\]