\[\boxed{\mathbf{16.}}\]
\[\textbf{а)}\ \lim_{x \rightarrow 0}\frac{\text{tgx}}{x} = 1\]
\[tg\ x = \frac{\sin x}{\cos x};\]
\[\frac{\text{tgx}}{x} = \frac{\sin x}{\cos x}\ :x = \frac{\sin x}{\cos x \cdot x} =\]
\[= \frac{\sin x}{x} \cdot \frac{1}{\cos x};\]
\[\ \lim_{x \rightarrow 0}\frac{\text{tgx}}{x} = \ \lim_{x \rightarrow 0}{\frac{\sin x}{x} \cdot \frac{1}{\cos x}} =\]
=\(\lim_{x \rightarrow 0}\frac{\sin x}{x} \cdot \lim_{x \rightarrow 0}\frac{1}{\cos x} =\)
\[= \lim_{x \rightarrow 0}\frac{\sin x}{x} \cdot \frac{1}{\lim_{x \rightarrow 0}{\cos x}} =\]
\[= 1 \cdot \frac{1}{\cos 0} = 1 \cdot 1 = 1.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{б)}\ \lim_{x \rightarrow 0}\frac{\text{tgx}}{\sin x} = 1\]
\[tg\ x = \frac{\sin x}{\cos x};\]
\[\frac{\text{tgx}}{x} = \frac{\sin x}{\cos x}\ :\sin x =\]
\[= \frac{\sin x}{\cos x \cdot \sin x} = \frac{1}{\cos x};\]
\[\ \lim_{x \rightarrow 0}\frac{\text{tgx}}{x} = \ \lim_{x \rightarrow 0}\frac{1}{\cos x} =\]
\[= \lim_{x \rightarrow 0}\frac{1}{\cos x} = \frac{1}{\cos 0} = \frac{1}{1} = 1.\]
\[Что\ и\ требовалось\ доказать.\]