\[\boxed{\mathbf{11.}}\]
\[\mathbf{а)\ }\lim_{x \rightarrow 0 - 0}\frac{x}{|x|} = \frac{x}{- x} = - 1;\]
\[\lim_{x \rightarrow 0 + 0}\frac{x}{|x|} = \frac{x}{x} = 1.\]
\[При\ a = 0 - не\ существует.\]
\[\textbf{б)}\ \lim_{x \rightarrow - 2 - 0}\frac{x^{2} - 4}{x + 2} =\]
\[= \frac{(x - 2)(x + 2)}{- (x + 2)} =\]
\[= - ( - 2 - 2) = 4;\]
\[\lim_{x \rightarrow - 2 + 0}\frac{x^{2} - 4}{x + 2} = \frac{(x - 2)(x + 2)}{x + 2} =\]
\[= - 2 - 2 = - 4;\]
\[При\ a = - 2 \rightarrow не\ существует.\]
\[\textbf{в)}\ \lim_{x \rightarrow 0 - 0}\frac{x²}{|x|} = \frac{x^{2}}{- x} = 0;\]
\[\lim_{x \rightarrow 0 + 0}\frac{x^{2}}{|x|} = \frac{x^{2}}{x} = 0.\]
\[При\ a = 0 - не\ существует.\]
\[\textbf{г)}\ \lim_{x \rightarrow 0 - 0}\frac{x^{3}}{|x|} = \frac{{- x}^{3}}{- x} = 0;\]
\[\lim_{x \rightarrow 0 + 0}\frac{x^{3}}{|x|} = \frac{x^{3}}{x} = 0.\]
\[При\ a = 0 - не\ существует.\]