\[\boxed{\mathbf{28.}}\]
\[\textbf{а)}\ \frac{1}{\sqrt{x + 2}} + x < \frac{1}{\sqrt{x + 2}} + 5\]
\[x + 2 > 0\]
\[x > - 2.\]
\[M = ( - 2; + \infty).\]
\[x < 5.\]
\[Решение\ неравенства:\]
\[x \in ( - 2;5).\]
\[Ответ:\ x \in ( - 2;5).\]
\[\textbf{б)}\ \frac{2}{\sqrt{x + 3}} + x < \frac{2}{\sqrt{x + 3}} + 4\]
\[x + 3 > 0\]
\[x > - 3.\]
\[M = ( - 3; + \infty).\]
\[x < 4.\]
\[Решение\ неравенства:\]
\[x \in ( - 3;4).\]
\[Ответ:\ x \in ( - 3;4).\]
\[\textbf{в)}\ \frac{3}{\sqrt{x + 4}} + x > \frac{3}{\sqrt{x + 4}} + 3\]
\[x + 4 > 0\]
\[x > - 4.\]
\[M = ( - 4; + \infty).\]
\[x > 3.\]
\[Решение\ неравенства:\]
\[x \in (3; + \infty).\]
\[Ответ:\ x \in (3; + \infty).\]
\[\textbf{г)}\ \frac{4}{\sqrt{x + 5}} + x > \frac{4}{\sqrt{x + 5}} + 2\]
\[x + 5 > 0\]
\[x > - 5.\]
\[M = ( - 5; + \infty).\]
\[x > 2.\]
\[Решение\ неравенства:\]
\[x \in (2; + \infty).\]
\[Ответ:\ x \in (2; + \infty).\]