\[\boxed{\mathbf{22.}}\]
\[\textbf{а)}\ \frac{2}{\sqrt{\sin x}} > \frac{x^{2} - x}{\sqrt{\sin x}}\]
\[\sin x > 0\]
\[2\pi n < x < \pi + 2\pi n.\]
\[M = (0;\ \pi).\]
\[2 > x^{2} - x\]
\[x^{2} - x - 2 < 0\]
\[x_{1} + x_{2} = 1;x_{1} \cdot x_{2} = - 2\]
\[x_{1} = - 1;\ \ \ x_{2} = 2.\]
\[(x + 1)(x - 2) < 0\]
\[- 1 < x < 2.\]
\[Решение\ неравенства:\]
\[x \in (0;2).\]
\[Ответ:\ x \in (0;2).\]
\[\textbf{б)}\ \frac{6}{\sqrt{\cos x}} > \frac{x^{2} + x}{\sqrt{\cos x}}\]
\[\cos x > 0\]
\[- \frac{\pi}{2} + 2\pi n < x < \frac{\pi}{2} + 2\pi n\ .\]
\[M = \left( - \frac{\pi}{2};\frac{\pi}{2} \right).\]
\[6 > x^{2} + x\]
\[x^{2} + x - 6 < 0\]
\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = - 6\]
\[x_{1} = - 3;\ \ x_{2} = 2;\]
\[(x + 3)(x - 2) < 0\]
\[- 3 < x < 2.\]
\[Решение\ неравенства:\]
\[x \in \left( - \frac{\pi}{2};\frac{\pi}{2} \right).\]
\[Ответ:\ x \in \left( - \frac{\pi}{2};\frac{\pi}{2} \right).\]