\[\boxed{\mathbf{53.}}\]
\[\textbf{а)}\ 3tg^{2}\left( \pi x - \frac{\pi}{8} \right) = 1\]
\[x \in \left( \frac{3}{2};3 \right);\]
\[tg^{2}\left( \pi x - \frac{\pi}{8} \right) = \frac{1}{3}\]
\[1)\ tg\left( \pi x - \frac{\pi}{8} \right) = \frac{1}{\sqrt{3}}\]
\[\frac{3}{2} < \frac{7}{24} + k < 3\]
\[k = 2:\]
\[x = 2\frac{7}{24}.\]
\[2)\ tg\ \left( \pi x - \frac{\pi}{8} \right) = - \frac{1}{\sqrt{3}}\]
\[\frac{3}{2} < - \frac{1}{24} + k < 3\]
\[k = 2:\]
\[x = - \frac{1}{24} + 2 = 1\frac{23}{24}.\]
\[k = 3:\]
\[x = - \frac{1}{24} + 3 = 2\frac{23}{24}.\]
\[Ответ:x = 2\frac{7}{24};x = 1\frac{23}{24};\]
\[x = 2\frac{23}{24}.\]
\[\textbf{б)}3\cos{2x} - 5\cos x = 1\]
\[x \in \lbrack 0;2\pi\rbrack;\]
\[3\left( 2cos^{2}x - 1 \right) - 5\cos x = 1\]
\[6cos^{2} - 3 - 5\cos x - 1 = 0\]
\[6\cos^{2}x - 5\cos x - 4 = 0\]
\[\cos x = t:\]
\[6t^{2} - 5t - 4 = 0\]
\[D = 25 + 96 = 121\]
\[t_{1} = \frac{5 + 11}{12} = \frac{16}{12} = \frac{4}{3};\]
\[t_{2} = \frac{5 - 11}{12} = - \frac{6}{12} = - \frac{1}{2}.\]
\[1)\cos x = \frac{4}{3}\]
\[\cos x > 1\]
\[корней\ нет.\]
\[2)\cos x = - \frac{1}{2}\]
\[x = \pm \frac{2\pi}{3} + 2\pi k.\]
\[0 \leq \frac{2\pi}{3} + 2\pi k \leq 2\pi\]
\[k = 0:\]
\[x = \frac{2\pi}{3}.\]
\[0 \leq - \frac{2\pi}{3} + 2\pi k \leq 2\pi\]
\[k = 1:\]
\[x = - \frac{2\pi}{3} + 2\pi = \frac{4\pi}{3}.\]
\[Ответ:x = \frac{2\pi}{3};\ \ x = \frac{4\pi}{3}.\]