\[\boxed{\mathbf{5.}}\]
\[\textbf{а)}\ \sqrt[4]{x + 1} = \sqrt[4]{2x - 5}\]
\[1)\ x + 1 \geq 0\]
\[x \geq - 1.\]
\[2)\ 2x - 5 \geq 0\]
\[2x \geq 5\]
\[x \geq 2,5.\]
\[M = \lbrack 2,5; + \infty).\]
\[3)\ x + 1 = 2x - 5\]
\[x = 6.\]
\[Ответ:x = 6.\ \]
\[\textbf{б)}\ \sqrt[4]{x - 1} = \sqrt[4]{2x + 5}\]
\[1)\ x - 1 \geq 0\]
\[x \geq 1.\]
\[2)\ 2x + 5 \geq 0\]
\[x \geq - 2,5.\]
\[M = \lbrack 1; + \infty).\]
\[3)\ x - 1 = 2x + 5\]
\[x = - 6\]
\[нет\ решений.\]
\[Ответ:нет\ корней.\]
\[\textbf{в)}\ \sqrt{2x + 11} = \sqrt{4x + 1}\]
\[1)\ 2x + 11 \geq 0\]
\[x \geq - 5,5.\]
\[2)\ 4x + 1 \geq 0\]
\[x \geq - \frac{1}{4}\]
\[x \geq - 0,25.\]
\[M = \lbrack - 0,25; + \infty).\]
\[3)\ 2x + 11 = 4x + 1\]
\[2x = 10\]
\[x = 5.\]
\[Ответ:x = 5.\]
\[\textbf{г)}\ \sqrt{2x - 9} = \sqrt{4x + 3}\]
\[1)\ 2x - 9 \geq 0\]
\[x \geq 4,5.\]
\[2)\ 4x + 3 \geq 0\]
\[x \geq - \frac{3}{4}.\]
\[M = \lbrack 4,5; + \infty).\]
\[3)\ 2x - 9 = 4x + 3\]
\[2x = - 12\]
\[x = - 6.\]
\[нет\ корней.\]
\[Ответ:нет\ корней.\]