\[\boxed{\mathbf{29.}}\]
\[\textbf{а)}\log_{3}x = 4 - 3\log_{3}x\]
\[x > 0;\ \ x \neq 1;\]
\[M = (0;1) \cup (1; + \infty).\]
\[\log_{3}x = 4 - \frac{3}{\log_{3}x}\]
\[t = \log_{3}x:\]
\[t = 4 - \frac{3}{t}\]
\[t^{2} - 4t + 3 = 0\]
\[D_{1} = 4 - 3 = 1\]
\[t_{1} = 2 + 1 = 3;\]
\[t_{2} = 2 - 1 = 1.\]
\[\log_{3}x = 1\]
\[\log_{3}x = \log_{3}3\]
\[x = 3.\]
\[\log_{3}x = 3\]
\[\log_{3}x = \log_{3}3^{3}\]
\[x = 27.\]
\[Ответ:x = 3;x = 27.\]
\[\textbf{б)}\log_{4}x + 2 = 3\log_{x}4\]
\[x > 0;\ \ x \neq 1;\]
\[M = (0;1) \cup (1; + \infty).\]
\[\log_{4}x + 2 = \frac{3}{\log_{4}x}\]
\[t = \log_{4}x:\]
\[t + 2 = \frac{3}{t}\]
\[t^{2} + 2t - 3 = 0\]
\[D_{1} = 1 + 3 = 4\]
\[t_{1} = - 1 + 2 = 1;\]
\[t_{2} = - 1 - 2 = - 3.\]
\[\log_{4}x = 1\]
\[\log_{4}x = \log_{4}4\]
\[x = 4.\]
\[\log_{4}x = \log_{4}4^{- 3}\]
\[x = \frac{1}{4^{3}}\]
\[x = \frac{1}{64}.\]
\[Ответ:x = \frac{1}{64};\ \ x = 4.\]
\[\textbf{в)}\log_{3}x - 2 = 3\log_{x}3\]
\[x > 0;\ \ x \neq 1;\]
\[M = (0;1) \cup (1; + \infty).\]
\[\log_{3}x - 2 = \frac{3}{\log_{3}x}\]
\[\log_{3}x = t:\]
\[t - 2 - \frac{3}{t} = 0\]
\[t^{2} - 2t - 3 = 0\]
\[D_{1} = 1 + 3 = 4\]
\[t_{1} = 1 + 2 = 3;\]
\[t_{2} = 1 - 2 = - 1.\]
\[\log_{3}x = 3\]
\[\log_{3}x = \log_{3}3^{3}\]
\[x = 27.\]
\[\log_{3}x = - 1\]
\[\log_{3}x = \log_{3}3^{- 1}\]
\[x = \frac{1}{3}.\]
\[Ответ:x = \frac{1}{3};\ \ x = 27.\]
\[\textbf{г)}\log_{2}x + 6\log_{x}2 = 5\]
\[x > 0;\ \ x \neq 1;\]
\[M = (0;1) \cup (1; + \infty).\]
\[\log_{2}x + \frac{6}{\log_{2}x} = 5\]
\[\log_{2}x = t:\]
\[t + \frac{6}{t} - 5 = 0\]
\[t - 5t + 6 = 0\]
\[t_{1} + t_{2} = 5;\ \ t_{1} \cdot t_{2} = 6\]
\[t_{1} = 2;\ \ t_{2} = 3.\]
\[\log_{2}x = 2\]
\[\log_{2}x = \log_{2}2^{2}\]
\[x = 4.\]
\[\log_{2}x = 3\]
\[\log_{2}x = \log_{2}2^{3}\]
\[x = 8.\]
\[Ответ:x = 4;x = 8.\]