\[\boxed{\mathbf{24}\mathbf{.}}\]
\[\textbf{а)}\lg\left( x^{2} - 4 \right) = \lg{(x - 1)}\]
\[x^{2} - 4 > 0\]
\[(x + 2)(x - 2) > 0\]
\[x < - 2;\ \ x > 2.\]
\[x - 1 > 0\]
\[x > 1.\]
\[M = (2; + \infty).\]
\[x^{2} - 4 = x - 1\]
\[x^{2} - x - 3 = 0\]
\[D = 1 + 12 = 13\]
\[x_{1} = \frac{1 + \sqrt{13}}{2} > 2;\]
\[x_{2} = \frac{1 - \sqrt{13}}{2} < 2.\]
\[Ответ:x = \frac{1 + \sqrt{13}}{2}.\]
\[\textbf{б)}\log_{2}\left( x^{2} - 9 \right) =\]
\[= \log_{2}(2 - x) + 1\]
\[\log_{2}\left( x^{2} - 9 \right) =\]
\[= \log_{2}{(2 - x)} + \log_{2}2^{1}\]
\[\log_{2}\left( x^{2} - 9 \right) = \log_{2}{2(2 - x)}\]
\[x^{2} - 9 > 0\]
\[(x + 3)(x - 3) > 0\]
\[x < - 3;\ \ x > 3.\]
\[2 - x > 0\]
\[x < 2.\]
\[M = ( - \infty;\ - 3).\]
\[x^{2} - 9 = 2(2 - x)\]
\[x^{2} - 9 = 4 - 2x\]
\[x^{2} + 2x - 13 = 0\]
\[D_{1} = 1 + 13 = 14\]
\[x_{1} = - 1 + \sqrt{14} > - 3;\]
\[x_{2} = - 1 - \sqrt{14} < - 3.\]
\[Ответ:x = - 1 - \sqrt{14}.\]
\[\textbf{в)}\lg{3x^{2}} = \lg(2x + 1)\]
\[3x^{2} \neq 0\]
\[x \neq 0.\]
\[2x + 1 > 0\]
\[2x > - 1\]
\[x > - 0,5.\]
\[M = ( - 0,5;0) \cup (0; + \infty).\]
\[3x^{2} = 2x + 1\]
\[3x^{2} - 2x - 1 = 0\]
\[D_{1} = 1 + 3 = 4\]
\[x_{1} = \frac{1 + 2}{3} = 1;\]
\[x_{2} = \frac{1 - 2}{3} = - \frac{1}{3}.\]
\[Ответ:x = - \frac{1}{3};\ \ x = 1.\]
\[\textbf{г)}\log_{2}\left( 16 - x^{2} \right) =\]
\[= \log_{2}{(1 + x)} + 1\]
\[\log_{2}\left( 16 - x^{2} \right) =\]
\[= \log_{2}{(1 + x)} + \log_{2}2^{1}\]
\[\log_{2}{(16 - x^{2})} = \log_{2}{2(1 + x)}\]
\[16 - x^{2} > 0\]
\[x^{2} - 16 < 0\]
\[(x + 4)(x - 4) < 0\]
\[- 4 < x < 4.\]
\[1 + x > 0\]
\[x > - 1.\]
\[M = ( - 1;4).\]
\[16 - x^{2} = 2(1 + x)\]
\[16 - x^{2} = 2 + 2x\]
\[x^{2} + 2x - 14 = 0\]
\[D_{1} = 1 + 14 = 15\]
\[x_{1} = - 1 + \sqrt{15};\]
\[x_{2} = - 1 - \sqrt{15} < - 1.\]
\[Ответ:x = - 1 + \sqrt{15}.\]