\[\boxed{\mathbf{73.}}\]
\[\left\{ \begin{matrix} x + 2 > \frac{x - 1}{2x} \\ x \in R;\ \ x \neq 0 \\ \end{matrix} \right.\ \]
\[x + 2 > \frac{x - 1}{2x}\]
\[\frac{2x(x + 2) - x + 1}{2x} > 0\]
\[\frac{2x^{2} + 4x - x + 1}{2x} > 0\]
\[\frac{2x^{2} + 3x + 1}{2x} > 0\]
\[2x^{2} + 3x + 1 = 0\]
\[D = 9 - 8 = 1\]
\[x_{1} = \frac{- 3 + 1}{4} = - \frac{1}{2} = - 0,5;\]
\[x_{2} = \frac{- 3 - 1}{4} = - 1.\]
\[(x + 1)(x + 0,5) = 0\]
\[\frac{(x + 1)(x + 0,5)}{2x} > 0\]
\[x \in ( - 1; - 0;5) \cup (0; + \infty).\]
\[Ответ:\ \]
\[x \in ( - 1; - 0;5) \cup (0; + \infty).\]
\[\left\{ \begin{matrix} x - 5 < \frac{x - 9}{2x} \\ x \in R;\ \ x \neq 0\ \\ \end{matrix} \right.\ \]
\[x - 5 < \frac{x - 9}{2x}\]
\[x - 5 - \frac{x - 9}{2x} < 0\]
\[\frac{2x^{2} - 10x - x + 9}{2x} < 0\]
\[\frac{2x^{2} - 11x + 9}{2x} < 0\]
\[2x^{2} - 11x + 9 = 0\]
\[D = 121 - 72 = 49\]
\[x_{1} = \frac{11 + 7}{4} = 4,5;\]
\[x_{2} = \frac{11 - 7}{4} = 1.\]
\[(x - 1)(x - 4,5) = 0\]
\[\frac{(x - 1)(x - 4,5)}{2x} < 0\]
\[x \in ( - \infty;0) \cup (1;4,5).\]
\[Ответ:\ x \in ( - \infty;0) \cup (1;4,5).\]