\[\boxed{\mathbf{45.}}\]
\[\textbf{а)}\ \sqrt{2x - 1} > x - 2\]
\[1)\ \left\{ \begin{matrix} 2x - 1 > (x - 2)^{2} \\ x - 2 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 2x - 1 > x^{2} - 4x + 4 \\ x \geq 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x^{2} - 6x + 5 < 0\]
\[D_{1} = 9 - 5 = 4\]
\[x_{1} = 3 + 2 = 5;\]
\[x_{2} = 3 - 2 = 1;\]
\[(x - 1)(x - 5) < 0\]
\[1 < x < 5.\]
\[\left\{ \begin{matrix} x > 1 \\ x < 5 \\ x \geq 2 \\ \end{matrix} \right.\ \]
\[2 \leq x < 5.\]
\[2)\ \left\{ \begin{matrix} 2x - 1 \geq 0 \\ x - 2 < 0\ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x \geq 0,5 \\ x < 2\ \ \ \\ \end{matrix} \right.\ \]
\[0,5 \leq x < 2.\]
\[Решение\ неравенства:\]
\[0,5 \leq x < 5.\]
\[Ответ:0,5 \leq x < 5.\]
\[\textbf{б)}\ \sqrt{2x + 1} > x - 1\]
\[1)\ \left\{ \begin{matrix} (2x + 1) > (x - 1)^{2} \\ x - 1 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 2x + 1 > x^{2} - 2x + 1 \\ x \geq 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x^{2} - 4x < 0\]
\[x(x - 4) < 0\]
\[0 < x < 4.\]
\[\left\{ \begin{matrix} x > 0 \\ x \geq 1 \\ x < 4 \\ \end{matrix} \right.\ \]
\[1 \leq x < 4.\]
\[2)\ \left\{ \begin{matrix} 2x + 1 \geq 0 \\ x - 1 < 0\ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x \geq - 0,5 \\ x < 1\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[- 0,5 \leq x < 1.\]
\[Решение\ неравенства:\]
\[- 0,5 \leq x < 4.\]
\[Ответ:\ - 0,5 \leq x < 4.\]