\[\boxed{\mathbf{42.}}\]
\[\textbf{а)}\ e^{x^{2} - 4x + 5} + \sqrt[3]{x^{2} - 4x + 5} =\]
\[= e^{2x^{2} - 3x + 7} + \sqrt[3]{2x^{2} - 3x + 7}\]
\[x^{2} - 4x + 5 =\]
\[= \left( x^{2} - 4x + 4 \right) + 1 =\]
\[= (x - 2)^{2} + 1 > 0;\]
\[f(u) = e^{u} + \sqrt[3]{u};\]
\[f(u) - возрастает\ на\ \text{R.}\]
\[Равносильное\ уравнение:\]
\[x^{2} - 4x + 5 = 2x^{2} - 3x + 7\]
\[x^{2} + x + 2 = 0\]
\[D = 1 - 8 = - 7 < 0\]
\[корней\ нет.\]
\[Ответ:нет\ корней.\]
\[\textbf{б)}\ \pi^{x^{2} + 100} + \sqrt[9]{x^{2} + 1000} =\]
\[= \pi^{2002x - 1001} + \sqrt[9]{2002x - 1001}\]
\[f(u) = \pi^{u} + \sqrt[9]{u} - возрастает\ \]
\[на\ R;\ \]
\[Равносильное\ уравнение:\]
\[x^{2} + 1000 = 2002x - 1001\]
\[x^{2} - 2002x + 2001 = 0\]
\[D_{1} = 1\ 002\ 001 - 2001 =\]
\[= 1\ 000\ 000\]
\[x_{1} = 1001 + 1000 = 2001;\]
\[x_{2} = 1001 - 1000 = 1.\]
\[Ответ:x = 2001;x = 1.\]
\[\textbf{в)}\ \left( \frac{1}{2} \right)^{\sin x} - \sqrt[5]{\sin x} =\]
\[= \left( \frac{1}{2} \right)^{\cos x} - \sqrt[5]{\cos x}\]
\[f(u) = \left( \frac{1}{2} \right)^{u} + \sqrt[5]{- u};\]
\[убывает\ на\ \text{R.}\]
\[Равносильное\ уравнение:\]
\[\sin x = \cos x\]
\[\frac{\sin x}{\cos x} = \frac{\cos x}{\cos x}\]
\[tgx = 1\]
\[x = \frac{\pi}{4} + \pi k.\]
\[Ответ:x = \frac{\pi}{4} + \pi k.\]
\[\textbf{г)}\ \left( \frac{1}{3} \right)^{\sin x} - \left( \sin x \right)^{2001} =\]
\[= \left( \frac{1}{3} \right)^{\sin^{2}x} - \left( \sin x \right)^{4002}\]
\[f(u) = \left( \frac{1}{2} \right)^{u} + \sqrt[5]{- u};\]
\[убывает\ на\ \text{R.}\]
\[Равносильное\ уравнение:\]
\[\sin x = \sin^{2}x\]
\[\sin x\left( \sin x - 1 \right) = 0\]
\[\sin x = 0\]
\[x = \pi n.\]
\[\sin x = 1\]
\[x = \frac{\pi}{2} + 2\pi k.\]
\[Ответ:x = \pi n;x = \frac{\pi}{2} + 2\pi k.\]